Патент на изобретение №2286946

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2286946 (13) C1
(51) МПК

C01B31/18 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.12.2010 – может прекратить свое действие

(21), (22) Заявка: 2005105799/15, 02.03.2005

(24) Дата начала отсчета срока действия патента:

02.03.2005

(46) Опубликовано: 10.11.2006

(56) Список документов, цитированных в отчете о
поиске:
С.CROUZEL et al, 11С-Labelled Phosgene: an Improved Procedure and Synthesis Device, Int. J. Appl. Isot., 1983, v.34, №11, pp.1558-1559. RU 2136581 C1, 10.09.1999. US 5346679 A, 13.09.1994. US 5911964 A, 15.06.1999. US 6060032 А, 09.05.2000. US 6464860 А, 15.10.2002. US 6565824 А, 20.05.2003. BG 51785 А, 15.09.1993.

Адрес для переписки:

121087, Москва, ул. Новозаводская, 2-6/7, кв.66, пат.пов. Т.С. Скомороховой

(72) Автор(ы):

Рупасов Сергей Иванович (RU),
Эльман Александр Рэмович (RU),
Батов Александр Евгеньевич (RU)

(73) Патентообладатель(и):

ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ “Ростхим” (RU),
Рупасов Сергей Иванович (RU),
Эльман Александр Рэмович (RU),
Батов Александр Евгеньевич (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ МОНООКСИДА УГЛЕРОДА

(57) Реферат:

Изобретение относится к химической промышленности и может быть использовано для синтеза различных органических соединений. Порошок медно-цинкового сплава, например, фракции 40-180 мкм и с содержанием Zn 20-40 вес.% подвергают взаимодействию с диоксидом углерода при температуре, заданной в диапазоне 380-750°С, и расходе диоксида углерода 15-30 л/ч. Повышение температуры от 380°С до заданной ведут со скоростью 2,0-3,0°С/мин. После достижения заданной температуры выдерживают не менее 1 ч. Повышение температуры до заданной и выдержку проводят не менее одного раза. Изобретение позволяет повысить более чем в 4 раза производительность процесса, а степень использования цинка – в 7 раз, 5 з.п. ф-лы, 1 табл.

Изобретение относится к неорганической химии, в частности к способам получения монооксида углерода (СО), который может быть использован для синтеза различных органических соединений.

Анализ литературных данных показывает, что длительное время монооксид углерода получают способами, заключающимися в пропускании диоксида углерода (CO2) при повышенных температурах через стационарный слой цинка, взятого в виде гранул или порошка (J.L.Huston, Т.Н.Norris. “Production of radioactive carbon monoxide and phosgene from barium carbonate”. J. Am. Chem. Soc., v.70, p.1968-1969, (1948)). В статье D.Roeda, C.Crouzel, В. van Zanten. “The production of 11C-phosgene without added carrier”. Radiochem. Radioanal. Letters, v.33, No.3, pp.175-178 (1978) также раскрыт способ получения монооксида углерода путем пропускания диоксида углерода через стационарный слой цинка.

К сожалению, известные способы получения монооксида углерода (СА, 2448524, кл. С 01 В 31/18, 2002 г.) осложнены тем, что связаны с проблемой проведения процесса в очень узком температурном интервале, 380-400°С, что обусловливает значительные трудности, поскольку ниже 370°С реакция практически не идет, а верхний предел ограничен температурой плавления цинка 419,6°С. Вместе с тем, в связи с экзотермичностью реакции (Н=-67 кДж/г-атом Zn) температура цинкового порошка может легко превысить верхний предел, что приводит к слипанию частиц цинка, находящихся в стационарном слое, “спеканию” всего слоя цинка и прекращению процесса. Другими недостатками известных способов являются использование невысоких расходов диоксида углерода (не более 6 л/ч), а также дополнительного газа-носителя (гелия). Следствием указанных недостатков является низкая удельная производительность процесса, что обусловливает малые объемы получаемого СО (Р. Lidström, Т. Kihlberg, В. Langsröm. “[11С] Carbon monoxide in the palladium-mediated synhesis of 11C-labelled ketones”. J. Chem. Soc., Perkin Trans. 1, pp.2701-2706 (1997)).

В статье С. Crouzel et.al. 11C-Labelled phosgene: an improved procedure and synthesis device”. Int. J. Appl. Radial Isot, v.34, No.11, pp.1558-1559 (1983) раскрыт способ, заключающийся в пропускании при температуре 380°С смеси диоксида углерода с гелием с объемной скоростью 1,5 л/ч через горизонтально расположенный реактор со стационарным слоем гранулированного цинка (содержание Zn – 99 вес. %, фракция 300-1500 мкм). В этих условиях производительность процесса составляет 1,4·10-2 л/ч·г, а степень использования цинка – 10,56%.

Известный способ позволяет увеличить объемы получаемого монооксида углерода и степень использования цинка, не устраняя, однако, таких существенных недостатков, как необходимость использования узкого интервала температур и проведение процесса при низких расходах диоксида углерода. Эти недостатки обусловливают большие неудобства в работе, а также низкую производительность данного способа, что не позволяет использовать его для получения монооксида углерода в количествах, достаточных для проведения препаративных синтезов органических соединений.

В рамках данной заявки решается задача упрощения способа получения монооксида углерода путем устранения неудобств, вызванных необходимостью проведения процесса вблизи температуры плавления цинка, увеличения производительности процесса, а также более полного использования цинка с целью получения монооксида углерода в количествах, необходимых для синтезов органических соединений в лабораторных масштабах.

Поставленная задача решается за счет получения монооксида углерода взаимодействием диоксида углерода с порошком медно-цинкового сплава при температуре в диапазоне 380-750°С и расходе диоксида углерода 15-30 л/ч.

Целесообразно монооксид углерода получать в режиме повышения температуры от 380 С до заданной температуры со скоростью, выбранной из диапазона 2,0-3,0 град/мин.

Кроме того, после достижения заданной температуры в диапазоне 380-750°С предпочтительно проводить выдержку не менее одного часа.

В данном способе повышение температуры до заданного значения и последующую выдержку проводят не менее одного раза.

При этом в данном способе получения монооксида углерода целесообразно использовать порошок медно-цинкового сплава с содержанием Zn 20-40 вес. % фракции 40-180 мкм.

Данные оптимальные соотношения компонентов медно-цинкового сплава и температурные интервалы были установлены авторами экспериментально на основе изучения термодинамики процесса получения монооксида углерода. Сущность изобретения состоит в установлении причинно-следственной связи между термодинамическими режимами получения монооксида углерода, включая температурный режим и расход газообразного реагента – двуокиси углерода. При отсутствии общеизвестных закономерностей физико-химического состояния медно-цинкового сплава после его обработки двуокисью углерода при температуре более 400°С, а также влияния условий проведения процесса на изменение состава компонентов сплава авторами были экспериментально найдены оптимальные значения температурного диапазона, применительно к исходному составу сплава в условиях существенно увеличенного расхода двуокиси углерода.

Указанные режимы проведения процесса, включая использование цинк-медных сплавов определенного состава, а также выбранные расходы двуокиси углерода и температурные диапазоны позволяют более чем в 4 раза увеличить удельную производительность процесса, увеличив степень использования цинка в 7 раз. В то же время расширение температурного диапазона существенно облегчает проведение процесса, а применение режима псевдоожижения исключает возможность спекания порошка, и нет необходимости использовать дополнительный газ-носитель.

Процесс получения монооксида СО представлен следующим уравнением:

CO2+Zn=СО+ZnO.

Пример 1. В кварцевый реактор загружают 100 г порошка сплава Cu-Zn с содержанием Zn не менее 37% (латунь марки ПР Л63, фракция 40-100 мкм). Систему продувают диоксидом углерода в течение 10 мин. Затем порошок переводят в псевдоожиженное состояние (расход диоксида углерода – 15 л/ч) и нагревают в течение 10 мин до 380°С. Далее процесс ведут, повышая температуру в интервале 380-750°С со скорость 2 град/мин. Производительность процесса составляет 6,7·10-2 л/ч·г; степень использования цинка – 58,44%.

Пример 2. Получение монооксида углерода по примеру 1, но используют порошок сплава Cu-Zn с содержанием Zn не менее 25% (латунь марки ПР ЛС74-1, фракция 40-100 мкм). Температуру в интервале 380-750°С повышают со скоростью 2,7 град/мин. Производительность процесса составляет 6,5·10-2 л/ч·г; степень использования цинка – 42,59%.

Пример 3. Получение монооксида углерода по примеру 2, но загружают 150 г порошка латуни. Расход диоксида углерода – 20 л/ч. Процесс ведут, повышая температуру в интервале 380-750°С со скоростью 2,3 град/мин. Производительность процесса составляет 4,3·10-2 л/ч·г; степень использования цинка – 33,1%.

Пример 4. Получение монооксида углерода по примеру 2, но используют порошок латуни фракции 40-180 мкм и расход диоксида углерода 29 л/ч. Процесс ведут, повышая температуру в интервале 380-750°С со скоростью 2 град/мин. Производительность процесса составляет 5,6·10-2 л/ч·г; степень использования цинка – 49,12%.

Пример 5. Получение монооксида углерода по примеру 1, но с последующей выдержкой при 750°С в течение 1 часа. Общая продолжительность процесса – 4 часа. Производительность процесса составляет 6,2·10-2 л/ч·г; степень использования цинка – 72,73%.

Применение медно-цинковых сплавов, как более тугоплавких материалов по сравнению с цинком, позволяет исключить вредное влияние температур вблизи точки плавления цинка и, следовательно, исключить возможность неконтролируемой остановки процесса в результате “спекания” металлического порошка. Осуществление предлагаемого процесса по сравнению с существующими способами позволяет упростить способ получения монооксида углерода, повысить его надежность и стабильность протекания процесса получения СО за счет существенного расширения температурного интервала проведения процесса, увеличить производительность по монооксиду углерода и поднять степень использования цинка, а также исключить применение дополнительного газа-носителя.

Результаты проведения процесса в сравнении с прототипом представлены в таблице.

Сравнение предлагаемого способа с прототипом
Пример Способ Материал Количество, г Содержание Zn, % вес. Фракция, МКМ Расход CO2, л/ч Температура, °С Скорость нагрева, град/мин Производительность по СО, л/ч·г×102 Степень использования Zn, %
Прототип Цинк 100 100 300-1500 1,5* 380 0 1,4** 10,56**
1 Данный способ Латунь ПРЛ 63 100 37 40-100 15 380-750 2,0 6,7 58,44
2 Латунь ПР ЛС 74-1 100 25 40-100 15 380-750 2,7 6,5 42,59
3 Латунь ПР ЛС 74-1 150 25 40-100 20 380-750 2,3 4,3 33,1
4 Латунь ПР ЛС 74-1 100 25 40-180 29 380-750 2,0 5,6 49,12
5 Латунь ПРЛ 63 100 37 40-100 15 380-750 2,0 6,2 72,73
*расход смеси диоксида углерода с гелием.
**расчет значения величины проведен авторами предлагаемого изобретения на основе данных прототипа.

Формула изобретения

1. Способ получения монооксида углерода взаимодействием диоксида углерода с порошком медно-цинкового сплава при температуре, заданной в диапазоне 380-750°С, и расходе диоксида углерода 15-30 л/ч.

2. Способ по п.1, в котором монооксид углерода получают в режиме повышения температуры от 380°С до заданной температуры со скоростью, выбранной из диапазона 2,0-3,0 град/мин.

3. Способ по п.2, в котором после достижения заданной температуры проводят выдержку не менее 1 ч.

4. Способ по п.3, в котором повышение температуры до заданной температуры и последующую выдержку проводят не менее одного раза.

5. Способ по одному из пп.1-4, в котором используют порошок медно-цинкового сплава фракции 40-180 мкм.

6. Способ по одному из пп.1-4, в котором используют порошок медно-цинкового сплава с содержанием Zn 20-40 вес.%.

Categories: BD_2286000-2286999