(21), (22) Заявка: 2005104108/04, 10.02.2004
(24) Дата начала отсчета срока действия патента:
10.02.2004
(43) Дата публикации заявки: 10.08.2005
(46) Опубликовано: 27.10.2006
(56) Список документов, цитированных в отчете о поиске:
RU 2143487 C1, 27.12.1999. RU 22113063 С1, 27.09.2003. SU 1661205 А1, 07.07.1991. RU 2109815 C1, 27.04.1998. RU 2181885 C2, 27.04.2002. SU 1735767 А1, 23.05.1992. SU 1092173 А1, 15.05.1984.
(62) Номер и дата подачи первоначальной заявки, из которой данная заявка выделена: PCT/RU 2004/000044 (10.02.2004)
(85) Дата перевода заявки PCT на национальную фазу:
23.03.2005
(86) Заявка PCT:
RU 2004/000044 (10.02.2004)
(87) Публикация PCT:
WO 2005/075981 (18.08.2005)
Адрес для переписки:
410012, г.Саратов, ул. Московская, 155, СГУ, ПЛО, О.И. Куприяновой
|
(72) Автор(ы):
Скиданов Евгений Викторович (RU), Голец Александр Владимирович (RU)
(73) Патентообладатель(и):
Скиданов Евгений Викторович (RU), Голец Александр Владимирович (RU)
|
(54) СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОБИОЛОГИЧЕСКОГО ЗАГРЯЗНЕНИЯ ВОДНЫХ СРЕД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(57) Реферат:
Группа изобретений относится к микробиологии и экологии и может быть использована для мониторинга водных бассейнов и грунтовых вод, а также бактериологического контроля водных растворов и суспензии в медицине, пищевой и других отраслях промышленности. Способ количественного определения микробиологического загрязнения воды и водных сред заключается в отборе проб исследуемой среды, ее пропускании через бактерицид формулы R4NIn((n-1)/2)Н2O, доведении рН пробы до значений 5-6 и определении микробиологического загрязнения среды по концентрации йода, выделившегося после взаимодействия пробы с бактерицидом. Микробиологическое загрязнение среды может быть определено как по концентрации йода в восстановленной форме J–, так и в окисленной форме J2. Устройство для осуществления способа содержит бактерицидный фильтр, соединенный с реакционной камерой, на выходе которой установлен регистрирующий прибор. Достигается повышение чувствительности и достоверности количественного определения микробиологического загрязнения воды и водных сред при сокращении времени определения. 2 н. и 3 з.п. ф-лы, 4 табл., 1 ил.
Область применения
Изобретение относится к микробиологии и экологии, а именно к области определения микробиологического загрязнения водных сред, и может быть использовано для мониторинга поверхностных и подземных вод, а также бактериологического контроля водных растворов и суспензий в медицине, пищевой и других отраслях промышленности.
Предшествующий уровень техники
Оценка количественного присутствия бактерий в воде и жидких водных средах, а также степень заражения являются важнейшим требованием экологической безопасности. Особенно важен контроль бактериального заражения водных сред в условиях эпидемиологических ситуаций, когда такой контроль должен осуществляться максимально быстро.
Общепринятым в настоящее время является метод контрольного рассева с последующим подсчетом образовавшихся колоний.
В качестве регистрирующего прибора для прямого количественного подсчета микробных тел в воде и водных средах используются оптические приборы, например микроскоп.
Этот метод достаточно точен, однако требует значительного времени – от 48 до 72 часов.
Существуют и другие методы контроля степени бактериального заражения, которые можно условно разделить на две большие группы.
1) Прямые методы, заключающиеся в непосредственном подсчете микробных клеток. Из прямых методов известны, в частности, такие, как прямой подсчет микробных клеток, имеющих собственную окраску (см. заявку на изобретение РФ №2000122909, МПК C 12 Q 1/04).
2) Косвенные методы, использующие те или иные специфические свойства бактерий, например электропроводность (см. заявку на изобретение РФ №2001132198, МПК C 12 Q 1/06), светорассеяние (см. патент на изобретение GB №2386946, МПК C 12 Q 1/04), способность к флюоресценции (см. патент на изобретение СА №2264272, МПК C 12 Q 1/04).
Косвенные методы более разнообразны. Так, например, известны методы, использующие цветоиндикаторы, окрашивающие продукты жизнедеятельности бактерий (см. Международная заявка № WO 0218625, МПК C 12 Q 1/04; патент США № US 6632632, МПК C 12 Q 1/04; патент США № US 2003203422, МПК C 12 Q 1/04) или использующие цветные реакции при взаимодействии бактерий с антигенами и антителами (см. Европейский патент № ЕР 1356080, МПК C 12 Q 1/04).
Для косвенного определения микробиологических загрязнений в качестве регистрирующих приборов используются приборы для измерения светорассеяния и флюоресценции.
В последнее время получили распространение так называемые “молекулярные” методы, заключающиеся в приготовлении препаратов бактерий с мечеными нуклеокислотами, которые могут быть обнаружены физическими методами (см. патент США № US 6630302, МПК C 12 Q 1/68).
Эти “молекулярные” методы достаточно точны в оценке бактериального заражения, однако даже самые быстрые из них (если не включать в рассмотрение предварительную подготовку препаратов) требуют не менее 4-х часов.
Кроме прочего, все вышеперечисленные методы требуют соблюдения стерильных условий, что труднодостижимо в полевых условиях.
Наиболее близким к предлагаемому устройству по способу регистрации микробиологических загрязнений является детектор подвижных микроорганизмов, предназначенный для контроля качества воды с использованием оптического метода, содержащий кювету для исследуемой жидкости в виде отрезка полого оптического волновода, источник оптического излучения и два или более фотоприемника (см. патент на изобретение РФ №2143487, МПК С 12 М 1/34).
Раскрытие изобретения
Задачей предлагаемого изобретения является повышение чувствительности и достоверности способа количественного определения микробиологического загрязнения воды и водных сред при сокращении времени определения.
Для решения задачи, в соответствии с предложенным способом количественного определения микробиологического загрязнения воды и водных сред, проводят отбор проб исследуемой среды, которые пропускают через бактерицид формулы R4NIn((n-1)/2) H2O, доводят рН пробы до значений 5-6 и определяют микробиологическое загрязнение среды по концентрации иода, выделившегося после взаимодействия пробы с бактерицидом.
Указанный бактерицид известен как препарат для создания эффективных обеззараживающих средств для воды и водных растворов (патент РФ №2213063, 27.09.2003). В нем n – целое число от 3 до 9, R – органический радикал, N – азот, I – иод.
Микробиологическое загрязнение среды может быть определено как по концентрации йода в восстановленной форме J–, так и в окисленной форме J2.
На решение поставленной задачи направлено решение, касающееся устройства для осуществления способа, содержащее регистрирующий прибор, включающий источник оптического излучения, кювету для исследуемой среды и фотоприемник, бактерицидный фильтр с бактерицидом формулы R4NIn((n-1)/2)Н2О и реакционную камеру, соединенные между собой. При этом регистрирующий прибор установлен на выходе реакционной камеры.
Реакционная камера выполнена из коррозионно-стойкого материала и имеет горловину для ввода реагентов, узел перемешивания.
Изобретение поясняется чертежом, на котором представлена блок-схема устройства, с помощью которого может быть реализован заявляемый способ.
Позициями на чертеже обозначены: 1 – бактерицидный фильтр, 2 – реакционная камера, 3 – горловина для ввода реагентов, 4 – узел перемешивания, 5 – выходной патрубок с вентилем, 6 – регистрирующий прибор.
Предлагаемый способ основан на использовании йодсодержащего бактерицида, имеющего полезное свойство выделять положительный йод-радикал “по сигналу” – при появлении в воде живых микроорганизмов, несущих избыточный электростатический заряд. Выделяющийся бактерицидом положительный йод-радикал (I*+) взаимодействует только с электростатическим зарядом микроорганизмов, а не с функциональными группами их оболочек. Это количественное взаимодействие, положенное в основу заявляемого способа, использовано для счета микробиологических загрязнений. Данное взаимодействие поясняется следующей формулой:

где Q*- – микробиологический объект, несущий отрицательный электростатический заряд;
R4NIn((n-1)/2)Н2О – йодсодержащий бактерицид;
(Q*I*)0 – йод-радикал, присоединенный к микробиологическому объекту;
I– – йод в восстановленной форме.
Степень микробиологического загрязнения, например бактериального заражения, определяется по количеству образовавшихся йодид-ионов (I–) любым из известных способов: весовым, титрометрическим, колориметрическим и т.д.
Наиболее удобным является количественное колориметрическое определение йода, образующегося после перевода йодид-ионов в молекулярный йод в результате окислительной реакции в кислой среде (рН 5-6), например, по формуле

Результаты экспериментов показали, что концентрация йода пропорциональна степени микробиологического загрязнения, т.е. количеству микробных тел в единице объема.
Устройство для количественного определения микробиологического загрязнения воды и водных сред состоит из бактерицидного фильтра 1, соединенного с реакционной камерой 2, имеющей горловину 3 для ввода реагентов. Для ускорения реакции камера может быть снабжена узлом перемешивания 4. Камера имеет выходной патрубок с вентилем 5. Устройство содержит также регистрирующий прибор 6. В качестве регистрирующего прибора может быть использован фотоэлектроколориметр.
Бактерицидный фильтр 1 представляет собой емкость, в которой в качестве засыпки использован йодсодержащий бактерицид формулы R4NIn((n-1)/2)Н2О. Реакционная камера 2 представляет собой корпус из стойкого к коррозии материала, например полипропилена.
Лучший вариант осуществления изобретения
Определение микробиологического загрязнения осуществляют пропуская пробу воды через бактерицидный фильтр 1, в котором йодсодержащий бактерицид количественно взаимодействует с микробиологическими объектами. Выделившиеся в раствор йодид-ионы попадают в реакционную камеру 1, где в раствор для создания среды с рН 5-6 добавляют, например, фосфатно-лимонно-кислотный буфер. Затем в образовавшийся буферный раствор добавляют окислитель, например надсерно-кислый аммоний, в результате чего происходит реакция окисления йодид-ионов до йода с изменением окраски исходного раствора. Реакция может быть ускорена перемешиванием.
При использовании колориметрического способа концентрация йода в водном растворе может быть легко пересчитана в единицы бактериального заражения (количество микробных тел в см3, м.т./см3). В качестве раствора сравнения использовалась дистиллированная или деионизированная вода.
Пример 1:
Готовили пробы стерильной воды объемом 50 см3, затем загрязняли ее бактериями E.coli в концентрациях 5000 и 10000 м.т./см3 и последовательно пропускали через бактерицидный фильтр с насыпным объемом 100 см3.
Затем рН отфильтрованных растворов доводили добавлением 10 см фосфатно-лимонно-кислотного буферного раствора до значений 5-6, а концентрацию выделившегося из бактерицида йода, пропорциональную микробиологическому заражению воды (количеству микробных тел на единицу объема), определяли весовым методом путем осаждения 0,1 Н раствором AgNO3. Параллельно проводился контрольный опыт с пробой стерильной воды.
Результаты экспериментов представлены в таблице 1.
Таблица 1 |
Концентрация йода в восстановленной форме, г/дм3 |
Степень микробиолоического загрязнения воды, м.т./см3 |
0,0000 |
0 |
0,0020 |
5000 |
0,0039 |
10000 |
Корреляция между концентрацией йода и микробиологическим загрязнением воды определяется следующим эмпирическим уравнением:
,
где – концентрация йода в восстановленной форме,
CJ2 – концентрация йода в окисленной форме (молекулярный йод),
Q – количество микробных тел в единице объема, м.т./см3.
Пример 2.
Готовили пробы стерильной воды объемом 50 см3, которые загрязняли бактериями Е.Coli в концентрациях 500, 1000, 5000 и 10000 м.т./см3 и последовательно подвергали операциям, аналогичным описанным в примере 1, до получения отфильтрованного раствора с рН 5-6, содержащего йод в восстановленной форме.
Затем I– переводился в окисленную форму I2 стехиоиметрическим окислением надсерно-кислым аммонием (NH4)2S2O8 по реакции (2).
Концентрация I2, пропорциональная степени микробиологического загрязнения воды, определялась колориметрически по калибровке, выраженной уравнением
Д=16CJ2,
где Д – оптическая плотность.
Результаты исследований представлены в таблицах 2 и 3
Таблица 2 |
Концентрация йода, г/дм3 |
Степень микробиологического загрязнения воды, м.т./см3 |
0,00, |
0 |
0,0002 |
500 |
0,0004 |
1000 |
0,00180 |
5000 |
0,00391 |
10000 |
Таблица 3 |
Оптическая плотность, Д |
Степень микробиологического загрязнения воды, м.т./см3 |
0,0000 |
0 |
0,0064 |
500 |
0,0128 |
1000 |
0,0630 |
5000 |
0,1267 |
10000 |
В результате проведенных экспериментов (см. таблицу 3) выявлено, что зависимость микробиологического загрязнения от оптической плотности может быть выражена следующим эмпирическим уравнением:
Д=127 10-7Q
Пример 3.
Определение микробиологического загрязнения в пробе воды объемом 50 см3 из подземного источника глубиной 22 метра, расположенного на расстоянии 400 метров от реки Волга, проводили аналогично примеру 2.
Результаты приведены в таблице 4.
Таблица 4 |
Оптическая плотность, Д |
Степень микробиологического загрязнения воды, м.т./см3 |
0,5000 |
37000 |
Промышленная применимость
Предлагаемый способ количественного определения микробиологического загрязнения водных сред очень быстр (до 30 мин), точен (до 400 м.т./см3) и не требует особой стерильности.
Формула изобретения
1. Способ определения микробиологического загрязнения водных сред, заключающийся в отборе проб исследуемой среды, ее пропускании через бактерицид формулы R4NIn((n-1)/2)Н2О, доведении рН пробы до значений 5-6 и определение микробиологического загрязнения среды по концентрации йода, выделившегося после взаимодействия пробы с бактерицидом.
2. Способ по п.1, отличающийся тем, что микробиологическое загрязнение среды определяют по концентрации йода в восстановленной форме J–.
3. Способ по п.1, отличающийся тем, что микробиологическое загрязнение среды определяют по концентрации йода в окисленной форме J2.
4. Устройство для осуществления способа, содержащее регистрирующий прибор, отличающееся тем, что он дополнительно содержит бактерицидный фильтр с бактерицидом формулы R4NIn((n-1)/2)Н2О и реакционную камеру, соединенные между собой, при этом регистрирующий прибор установлен на выходе реакционной камеры.
5. Устройство по п.4, отличающееся тем, что реакционная камера выполнена из коррозионно-стойкого материала и имеет горловину для ввода реагентов, узел перемешивания, выходной патрубок.
РИСУНКИ
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Извещение опубликовано: 27.11.2007 БИ: 33/2007
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 11.02.2006
Извещение опубликовано: 20.06.2009 БИ: 17/2009
NF4A – Восстановление действия патента СССР или патента Российской Федерации на изобретение
Дата, с которой действие патента восстановлено: 20.06.2009
Извещение опубликовано: 20.06.2009 БИ: 17/2009
|