Патент на изобретение №2286362
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) КОМПОЗИЦИЯ НА ОСНОВЕ ЦИС-БУТАДИЕНОВОГО КАУЧУКА
(57) Реферат:
Изобретение относится к промышленности синтетического каучука, резинотехнических изделий и шинной промышленности, а именно к композициям на основе стереорегулярных полидиенов. Композиция на основе “лантаноидного” цис-1,4-бутадиенового каучука, включающая модификатор, в качестве последнего содержит бутадиен-стирольный каучук, полученный растворной сополимеризацией мономеров – бутадиена и стирола в присутствии литийорганического катализатора. Техническим результатом изобретения является снижение пластичности. 2 табл.
Изобретение относится к резиновой промышленности, в частности к композициям на основе цис-бутадиенового каучука. Известна вулканизуемая композиция на основе цис-бутадиенового каучука, включающая пластификатор – жидкий олигодиен, например, жидкий полибутадиен СКДНН в количестве 10 мас.ч. на 100 мас.ч. каучука (Патент США №3281389, кл. 260-336, 1962) [1]. Резины из данной композиции обладают низким сопротивлением многократным деформациям. Наиболее близкой по технической сущности к описываемому изобретению является вулканизуемая композиция на основе цис-1,4-бутадиенового каучука, полученного в присутствии каталитической системы Циглера-Натта на основе соединений лантаноидов и алюминийорганических соединений, содержащая структурный модификатор – полибутадиен с содержанием 1,2-звеньев 10-80%, в соотношении компонентов, мас.ч.: цис-1,4-бутадиеновый каучук – 100, модификатор – 1-100 (RU 2154656 С2, 20.08.2000) [2]. Недостатком прототипа является то, что данная вулканизуемая композиция характеризуется высокой пластичностью. Это затрудняет ее хранение и транспортировку. Предложенная композиция на основе лантаноидного цис-1,4-полибутадиена, полученного в присутствии каталитической системы Циглера-Натта на основе соединений лантаноидов и алюминийорганических соединений, содержит в качестве модификатора бутадиен-стирольный каучук, полученный путем сополимеризации указанных мономеров – бутадиена и стирола в алифатическом растворителе в присутствии литийорганического катализатора, при следующем соотношении компонентов (мас.ч.):
Смешение компонентов осуществляют в аппарате-смесителе в виде их растворов в ароматическом или алифатическом растворителях либо на вальцах при температуре 35-70°С. В первом случае полученную вулканизуемую композицию выделяют из раствора путем водной дегазации. Следует отметить, что при производстве шин указанные компоненты (цис-1,4-полибутадиен и бутадиен-стирольный каучук) смешивают в резиносмесительном оборудовании с другими компонентами шинных рецептур в виде сухих полимеров, что требует большого расхода электроэнергии. Предварительное смешение этих каучуков на стадии полимеризата позволяет значительно снизить энергозатраты на производство шин и других резинотехнических изделий. Кроме того, лантаноидный цис-1,4-полибутадиен, полученный в присутствии каталитической системы Циглера-Натта на основе соединений лантаноидов и алюминийорганических соединений, в силу высокой регулярности строения полимерной цепи, при низких температурах переходит в стеклообразное состояние. Использование его в виде композиции с бутадиен-стирольным каучуком позволяет также избежать дополнительных энергозатрат на предварительную декристаллизацию в зимний период. Предложенная вулканизуемая композиция характеризуется пониженной пластичностью наряду с высокими физико-механическими показателями вулканизатов. Сущность изобретения и его преимущества по сравнению с прототипом (примеры 1, 2) раскрыты в примерах 3-9. Пример 1 (прототип). Цис-1,4-полибутадиен получают полимеризацией бутадиена в среде толуола под влиянием каталитического комплекса на основе неодимовой соли альфа-разветвленных монокарбоновых кислот и алюминийорганических соединений. Для этого на батарею из шести полимеризаторов подают 30 т/час шихты, представляющей собой 10%-ный (мас.) раствор бутадиена (3 т/час) в толуоле (27 т/час) и 407 л/час (моль/час) суспензии каталитического комплекса. Конверсия мономера в шестом полимеризаторе 90%. Обрыв процесса полимеризации осуществляют раствором антиоксиданта (0,5 мас.% агидола-2). Отмывку полимеризата осуществляют частично умягченной водой в соотношении 1:1. Вулканизуемая композиция после выделения и сушки имеет следующие характеристики: вязкость по Муни – 45 ед., пластичность по Карреру – 0,61 ед., эластическое восстановление – 0,67 ед., текучесть (90°С) – 203 мм/час, хладотекучесть 27,9 мм/час, микроструктура: 1,2 звенья – 0,7%, 1,4-транс – 3,5%, 1,4-цис – 95,8%. Полученный полимеризат вулканизуемой композиции полимергомологов цис-1,4-полибутадиена в количестве 30 т/час с содержанием полимера 9,0 мас.% после стабилизации агидолом-2 поступает в аппарат-смеситель, куда одновременно подают 0,17 т/час толуольного раствора статистического 1,2-полибутадиена с содержанием полимера 16 мас.% Отмывку полученного раствора полимеров осуществляют частично умягченной водой в соотношении 1:1. Полимер после выделения и сушки содержит 1 мас.ч. 1,2-полибутадиена на 100 мас.ч. цис-1,4-полибутадиена и имеет характеристики, представленные в таблице 1. Структурный модификатор для данной композиции – 1,2-полибутадиен получают полимеризацией бутадиена в толуоле под действием н-бутиллития в качестве катализатора в присутствии диметилового эфира диэтиленгликоля (диглима) и дивинилбензола. Для этого в отдельный аппарат с мешалкой подают 2,5 т/час шихты, представляющей собой 16%-ный (мас.) раствор бутадиена (0,4 т/час) в толуоле (2,1 т/час), 100 л/час толуольного раствора н-BuLi (20 моль/час) в качестве катализатора и 67 л/час толуольного раствора диглима с содержанием 12,0 г/л (0,2 мас.% на мономер, подаваемый в этот реактор). Количество н-BuLi 50 моль/т на тонну подаваемого в отдельный аппарат мономера. Конверсия мономера 95%. Полученный низкомолекулярный литийполибутадиен в количестве 0,38 т/час (2,5 т/час раствора) поступает в предреактор объемом 0,63 м3, куда также подают 180 л/час раствора дивинилбензола (1,8 кг/час) в толуоле в качестве сшивающего агента (0,06 мас.% на весь мономер). Полученный таким образом “живущий” сополимер литийполибутадиена с дивинилбензолом в качестве катализатора поступает на полимеризационную батарею из пяти аппаратов, куда также подают шихту, представляющую собой 16%-ный (мас.) раствор бутадиена (2,6 т/час) в толуоле (13,7 т/час). Конверсия мономера в последнем аппарате 100%. Обрыв процесса полимеризации осуществляют раствором антиоксиданта (0,5% агидола-2). Полученный полимеризат представляет собой раствор 1,2-полибутадиена в толуоле с содержанием полимера 16 мас.%, 0,17 т/час которого поступает в аппарат-смеситель для смешения с раствором 1,4-цис-полибутадиена, а оставшаяся часть – на отмывку частично умягченной водой в соотношении 1:1. Образец 1,2-полибутадиена, отобранный из потока, поступающего на смешение, после выделения и сушки имеет следующие характеристики: вязкость по Муни – 35 ед., пластичность по Карреру – 0,55 ед., эластическое восстановление – 1,07 ед., текучесть (90°С) – 120 мм/час, хладотекучесть мм/час, микроструктура: 1,2 звенья – 68,0%, 1,4-транс – 6,6%, 1,4-цис – 25,4%. Пример 2 (прототип). В отличие от примера 1 на смешение с полимеризатом лантаноидного 1,4-цис-полибутадиена, полученного в присутствии каталитической системы Циглера-Натта на основе соединений лантаноидов и алюминийорганических соединений, подают 8,5 т/час раствора 1,2- полибутадиена с содержанием полимера 16,0 мас.% Содержание 1, 2-полибутадиена в вулканизуемой композиции 50 мас.ч. на 100 мас.ч. 1,4-цис-полибутадиена. Свойства композиции представлены в таблице 1. Пример 3. Лантаноидный цис-1,4-полибутадиен получают полимеризацией бутадиена в среде толуола под влиянием каталитического комплекса на основе октаноата неодима Nd(oct)3 и алюминийорганических соединений. Для этого на батарею из трех-пяти полимеризаторов подают 30 т/час шихты, представляющей собой 10%-ный (мас.) раствор бутадиена (3 т/час) в толуоле (27 т/час) и 450 л/час (1,5 моль Nd/час) раствора каталитического комплекса, предварительно сформированного путем взаимодействия расчетных количеств толуольных растворов Nd(oct)3, изобутилалюминийсесквихлорида (ИБАСХ) и триизобутилалюминия (ТИБА) в присутствии малых количеств диена (пиперилена). Температура процесса полимеризации 20-90°С, конверсия мономера в последнем полимеризаторе 95-100%. Обрыв процесса полимеризации осуществляют раствором антиоксиданта (0,5 мас.% на полимер). Свойства цис-1,4-полибутадиена после выделения и сушки: вязкость по Муни – 45 ед., содержание цис-1,4-звеньев – 97,5%, пластичность по Карреру – 0,65 ед., хладотекучесть – 54,0 мм/час. Полученный полимеризат композиции полимергомологов цис-1,4-полибутадиена в количестве 30 т/час с содержанием полимера 9,5 мас.% после обрыва и стабилизации поступает в аппарат-смеситель, куда одновременно подают 2,04 т/час раствора сополимера бутадиена со стиролом в алифатическом растворителе с содержанием полимера 14,0 мас.%. Композиция после выделения и сушки содержит 10 мас.ч. бутадиен-стирольного каучука на 100 мас.ч. цис-1,4-полибутадиена (0,1:1). Характеристика полученной композиции представлена в таблице 1. Модификатор для данной композиции – бутадиен-стирольный каучук получают сополимеризацией бутадиена со стиролом в среде алифатического растворителя (гексан, циклогексан, гексановая фракция) в присутствии литийорганического катализатора. Для этого на батарею, состоящую из трех-пяти полимеризаторов, подают 20 т/час предварительно очищенной от микропримесей шихты, содержащей 2250 кг/час бутадиена, 750 кг/час стирола и 17 т/час гексановой фракции, 120 л/час раствора дивинилбензола (ДВБ) (1,2 кг ДВБ/час) в качестве сшивающего агента и 100 л/час раствора n-BuLi (20 моль n-BuLi/час). При этом суммарная концентрация мономеров составляет 15 мас.%. Температура процесса полимеризации 50-80°С, конверсия мономеров в последнем полимеризаторе 93-100%. Обрыв процесса полимеризации осуществляют раствором антиоксиданта (0,5 мас.% на каучук). Полученный полимеризат представляет собой раствор бутадиен-стирольного каучука в гексановой фракции с содержанием полимера 14,0 мас.%, 2,04 т/час которого поступает на смешение с раствором цис-1,4-полибутадиена, а оставшаяся часть – на выделение полимера из раствора и сушку. Образец модификатора, отобранный из потока, поступающего на смешение, после выделения и сушки имеет следующие характеристики: вязкость по Муни МБ (1+4) 100°С – 48 ед., пластичность по Карреру – 0,30 ед., хладотекучесть – 0 мм/час, текучесть (90°С) – 12,0 мм/час, массовая доля связанного стирола – 25,4%, содержание 1,2-звеньев – 44,8%, коэффициент полидисперсности MW/Mn – 2,0, потери массы при 105°С – 0,4%, содержание золы – 0,2 мас.%. Пример 4. Полимеризацию бутадиена в присутствии каталитической системы Циглера-Натта на основе соединений лантаноидов и алюминийорганических соединений осуществляют на батарее из трех-пяти полимеризаторов, куда подают 30 т/час шихты, представляющей собой 14%-ный (мас.) раствор бутадиена (3 т/час) в алифатическом растворителе (гексан, гексановая фракция, нефрас П-1) и 450 л/час (1,5 моль Nd/час) раствора каталитического комплекса, предварительно сформированного путем взаимодействия расчетных количеств раствора Nd(oct)3 в нефрасе П-1 и толуольных растворов изобутилалюминийсесквихлорида (ИБАСХ) и триизобутилалюминия (ТИБА) в присутствии малых количеств диена (пиперилена). Температура процесса полимеризации 20-60°С, конверсия мономера в последнем полимеризаторе 95-100%. Обрыв процесса полимеризации осуществляют раствором антиоксиданта (0,5 мас.% на полимер). Свойства цис-1,4-полибутадиена после выделения и сушки: вязкость по Муни – 45 ед., содержание цис-1,4-звеньев – 97,3%, пластичность по Карреру – 0,55 ед., хладотекучесть – 24,0 мм/час. Модификатор для данной композиции получают так же, как в примере 3. В отличие от примера 3 содержание стирола в шихте, поступающей на батарею при получении модификатора, составляет 494 кг/час. При этом на смешение поступает 221 кг/час раствора бутадиен-стирольного каучука с концентрацией 12,9 мас.%. Полученная композиция содержит 1 мас.ч. модификатора на 100 мас.ч. цис-1,4-полибутадиена (0,01:1). Образец модификатора, отобранный из потока, поступающего на смешение, имеет следующие характеристики: вязкость по Муни МБ (1+4) 100°С – 47 ед., пластичность по Карреру – 0,32 ед., хладотекучесть – 0 мм/час, текучесть (90°С) – 10,0 мм/час, массовая доля связанного стирола – 17,9 мас.%, содержание 1,2-звеньев – 48,0%, Mw/Mn – 2,1, потери массы при 105°С – 0,42%, содержание золы – 0,2 мас.%. Пример 5. Получение лантаноидного цис-1,4-полибутадиена в присутствии каталитической системы Циглера-Натта на основе октаноата неодима и алюминийорганических соединений и бутадиен-стирольного каучука осуществляют так же, как в примере 3. В отличие от примера 3 при получении модификатора в составе шихты подают 528 кг/час стирола, а количество n-BuLi, поступающего на батарею, составляет 90 л/час (18,0 моль n-BuLi/час). При этом в аппарат-смеситель поступает 15 т/час раствора цис-1,4-полибутадиена в толуоле с содержанием полимера 9,5 мас.% и 10,71 т/час раствора модификатора с концентрацией 13,3 мас.%. Полученная композиция содержит 100 мас.ч. модификатора на 100 мас.ч. цис-1,4-полибутадиена (1:1). Образец модификатора, отобранный с потока, поступающего на смешение, имеет следующие характеристики: вязкость по Муни МБ (1+4) 100°С – 51 ед., пластичность по Карреру – 0,29 ед., хладотекучесть – 0 мм/час, текучесть (90°С) – 8,0 мм/час, массовая доля связанного стирола – 19,1%, содержание 1,2-звеньев – 43,0%, Mw/Mn – 2,2, потери массы при 105°С – 0,38%, содержание золы – 0,25 мас.%. Пример 6. Полимеризацию бутадиена под влиянием октаноата неодима и алюминийорганических соединений и получение модификатора осуществляют так же, как в примере 5. В отличие от примера 5 количество стирола, подаваемого в составе шихты при получении модификатора, составляет 790,5 кг/час. При этом в аппарат-смеситель поступает 295 кг/час раствора цис-1,4-полибутадиена в толуоле (28 кг/час полимера) и 20 т/час раствора бутадиен-стирольного каучука с концентрацией 14,0 мас.%. Композиция после выделения и сушки содержит 100 мас.ч модификатора на 1 мас.ч. цис-1,4-полибутадиена. Характеристика модификатора: вязкость по Муни МБ (1+4) 100°С – 50 ед., пластичность по Карреру – 0,30 ед., хладотекучесть – 0 мм/час, текучесть (90°С) – 10,0 мм/час, массовая доля связанного стирола – 26,1%, содержание 1,2-звеньев – 51%, Mw/Mn – 2,0, потери массы при 105°С – 0,40%, содержание золы – 0,19 мас.%. Пример 7. Полимеризацию бутадиена под влиянием каталитического комплекса на основе Nd(oct)3 и алюминийорганических соединений осуществляют так же, как и в примере 3. В отличие от примера 3 полученный полимеризат композиции полимергомологов цис-1,4-полибутадиена в количестве 30 т/час с содержанием полимера 9,5 мас.% после обрыва и стабилизации поступает в аппарат-смеситель, куда одновременно подают 4,01 т/час раствора блок-сополимера бутадиена со стиролом в алифатическом растворителе с содержанием полимера 14,2 мас.%. Композиция после выделения и сушки содержит 20 мас.ч. бутадиен-стирольного каучука на 100 мас.ч. цис-1,4-полибутадиена (0,2:1). Модификатор для данной вулканизуемой композиции получают путем блочной сополимеризации бутадиена со стиролом в среде алифатического растворителя (гексан, циклогексан, гексановая фракция) в присутствии литийорганического катализатора. Для этого в первый по ходу аппарат полимеризационой батареи, состоящей из пяти полимеризаторов, подают 19,25 т/час предварительно очищенной от микропримесей шихты, содержащей 2250 кг/час бутадиена и 17 т/час гексана, 120 л/час раствора дивинилбензола (ДВБ) (1,2 кг ДВБ/час) в качестве сшивающего агента и 90 л/час раствора n-BuLi (18 моль n-BuLi/час), а в третий по ходу полимеризатор подают стирол в количестве 562,5 кг/час. Температура процесса полимеризации 50-80°С, конверсия мономеров в последнем полимеризаторе 95-100%. Обрыв процесса полимеризации осуществляют раствором антиоксиданта (0,5 мас.% на каучук). Полученный полимеризат представляет собой раствор блок-сополимера бутадиена со стиролом в гексане с содержанием полимера 14,2 мас.%, 4,01 т/час которого поступает на смешение с раствором цис-1,4-полибутадиена, а оставшаяся часть – на выделение полимера из раствора и сушку. Образец модификатора, отобранный из потока, поступающего на смешение, после выделения и сушки имеет следующие характеристики: вязкость по Муни МБ (1+4) 100°С – 52 ед., пластичность по Карреру – 0,28 ед., хладотекучесть – 0 мм/час, текучесть (90°С) – 8,0 мм/час, массовая доля связанного стирола – 20,8%, содержание 1,2-звеньев – 48,5%, коэффициент полидисперсности MW/Mn – 2,1, потери массы при 105°С – 0,38%, содержание золы – 0,23 мас.%. Пример 8. Для получения композиции лантаноидный цис-1,4-полибутадиен, полученный в присутствии каталитической системы Циглера-Натта на основе октаноата неодима и алюминийорганических соединений, и бутадиен-стирольный каучук смешивают на вальцах при температуре 35°С в соотношении 50 мас.ч. модификатора на 100 мас.ч. цис-1,4-полибутадиена (0,5:1). Характеристика модификатора, использованного для приготовления композиции: вязкость по Муни МБ (1+4) 100°С – 51 ед., пластичность по Карреру – 0,40 ед., хладотекучесть – 3,0 мм/час, текучесть (90°С) – 19,0 мм/час, массовая доля связанного стирола – 26,8%, содержание 1,2-звеньев – 63%, массовая доля масла – 27,1%, MW/Mn – 2,2, потери массы при 105°С – 0,35%, содержание золы – 0,19 мас.%. Пример 9. Для получения композиции лантаноидный цис-1,4-полибутадиен, полученный в присутствии каталитической системы Циглера-Натта на основе октаноата неодима и алюминийорганических соединений, и модификатор смешивают на вальцах при температуре 70°С в соотношении 20 мас.ч. бутадиен-стирольного каучука на 100 мас.ч. цис-полибутадиена (0,2:1). Бутадиен-стирольный каучук, использованный в качестве модификатора, имеет следующие характеристики: вязкость по Муни МБ (1+4) 100°С – 52 ед., пластичность по Карреру – 0,28 ед., хладотекучесть – 0 мм/час, текучесть (90°С) – 11,0 мм/час, массовая доля связанного стирола – 19,5%, содержание 1,2-звеньев – 48,8%, MW/Мn – 2,1, потери массы при 105°С – 0,38%, содержание золы – 0,24 мас.%. Характеристики композиций, полученных в примерах 1-9, представлены в таблице 1. Согласно ГОСТ 19920.19-74 готовят резиновые смеси на основе композиций, полученных в соответствии с примерами 1, 3 и 9. Испытания вулканизатов проводят по ГОСТ 270-75. Результаты испытаний представлены в таблице 2. Из данных таблицы 1 следует, что композиции на основе лантаноидного цис-1,4-полибутадиена, полученного в присутствии каталитической системы Циглера-Натта на основе соединений лантаноидов и алюминийорганических соединений, включающие в качестве модификатора бутадиен-стирольный каучук, обладают значительно более низкой пластичностью по сравнению с прототипом, что практически решает проблему их транспортировки. Необходимо отметить также, что физико-механические свойства вулканизатов на основе полученных композиций, содержащих указанный модификатор, находятся на высоком уровне, характерном для лантаноидного цис-1,4-бутадиенового каучука (таблица 2). Таким образом, предложенная композиция характеризуется более низкой пластичностью по сравнению с известной композицией. Кроме того, использование растворного бутадиен-стирольного каучука в композиции с указанным лантаноидным цис-1,4-бутадиеновым каучуком позволяет устранить такие недостатки технологических свойств модификатора, как низкая когезионная прочность, невысокая клейкость смесей, повышенное теплообразование при смешении.
Литература 1. Патент США №3281389, кл. 260-336, 1962 (аналог). 2. RU 2154656 С2, 20.08.2000 (прототип). 3. Патент РФ №2139298, 1998. Опубл. 10.10.99., бюл. №28.
Формула изобретения
Композиция на основе лантаноидного цис-1,4-бутадиенового каучука, полученного в присутствии каталитической системы Циглера-Натта на основе соединений лантаноидов и алюминийорганических соединений, включающая модификатор, отличающаяся тем, что в качестве модификатора композиция содержит бутадиен-стирольный каучук, полученный растворной сополимеризацией указанных мономеров – бутадиена и стирола в присутствии литийорганическпх катализаторов при следующем соотношении компонентов, мас.ч.:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||