Патент на изобретение №2285574

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2285574 (13) C1
(51) МПК

B21J5/06 (2006.01)
C21D7/10 (2006.01)
C22F1/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.12.2010 – может прекратить свое действие

(21), (22) Заявка: 2005107361/02, 17.03.2005

(24) Дата начала отсчета срока действия патента:

17.03.2005

(46) Опубликовано: 20.10.2006

(56) Список документов, цитированных в отчете о
поиске:
RU 2130357 C1, 20.05.1999. RU 2063285 С1, 10.07.1996. SU 616003 А, 08.06.1978. GB 2041268 А, 10.09.1980. US 3611771 А, 12.10.1971.

Адрес для переписки:

127018, Москва, 3-й пр-д Марьиной рощи, 40, ГП “НПО “ТЕХНОМАШ”, отд.701, пат.пов. А.В. Корнилову, рег.№ 213

(72) Автор(ы):

Бещеков Владимир Глебович (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие “НПО “ТЕХНОМАШ” (RU)

(54) СПОСОБ СФЕРОДИНАМИЧЕСКОЙ НАНОРЕЗОНАНСНОЙ ОБРАБОТКИ МАТЕРИАЛОВ

(57) Реферат:

Изобретение относится к обработке материалов давлением и может быть использовано при получении холодным пластическим деформированием деталей с заданным уровнем эксплуатационных характеристик. Цилиндрическую заготовку размещают в полости матрицы на сферодинамическом флуктуационном модуле с опорой на толкатель и деформируют ее обкатным пуансоном. При этом обкатному пуансону и толкателю сообщают перемещение по кривым, имеющим форму логарифмической спирали, возрастающим в одном направлении. В результате обеспечивается реализация волновой природы пластической деформации и формирование в заготовке массивов материала с “искусственным интеллектом”. 1 ил.

Изобретение относится к области обработки материалов давлением, в частности к способам и устройствам для холодного пластического деформирования и получения деталей с заданным уровнем эксплуатационных характеристик, и может быть использовано при изготовлении:

– нового поколения датчиков измерения физических параметров в химически активных средах при сверхмалых и сверхвысоких давлениях, а также при высоких и криогенных температурных;

– нового поколения определяющих деталей видео- и аудиоаппаратуры (герконы – магнитоуправляемые контакты), позволяющие создать на базе одного элемента взаимоисключающие физические характеристики: высокая упругость – коррозионная стойкость – высокая магнитная индукция B5 – стабильная максимальная магнитная проницаемость max.

Известно устройство, реализующее способ Бещекова для торсионной сферодинамической обработки материалов [1].

Недостатком известного способа является невозможность в процессе деформирования заготовки обеспечить проникновение механизмов пластичности (мод ротационной пластичности) до микроуровня с целью формирования структурно-информационного поля в материале детали и длительного его хранения в готовом изделии.

Задачей настоящего изобретения является разработка способа, который позволяет реализовать волновую природу пластической деформации и обеспечивает проникновение ротора деформаций на наноуровень (10-9 м) материала заготовки и формирование в ней массивов материала с “искусственным интеллектом”.

Поставленная задача решается тем, что способ сферодинамической нанорезонансной обработки материалов включает размещение цилиндрической заготовки в полости матрицы на сферодинамическом флуктуационном модуле с опорой на толкатель и деформирование ее обкатным пуансоном, при этом обкатному пуансону и толкателю сообщают перемещение по кривым, имеющим форму возрастающей в одном направлении логарифмической спирали.

Способ сферодинамической нанорезонансной обработки материалов поясняется графическими материалами, где на чертеже представлен процесс формообразования детали на стадии динамической неустойчивости.

Способ осуществляют следующим образом.

Заготовку 6 устанавливают в полости матрицы 2 на опору – сферодинамический модуль 3 с полостью, в которой размещен резонатор 4. Модуль 3 размещен на толкателе 5. Затем к заготовке 6 подводят обкатной пуансон 1, фиксируя заготовку 6 в полости матрицы 2, и производят регламентированную торцевую осадку заготовки 6. Затем ее деформируют пуансоном 1, совершающим сложное движение: круговое обкатывание по кривой, имеющей форму логарифмической спирали, с одновременным циклическим осевым качанием. Сферодинамический модуль 3 при этом с определенным запаздыванием начинает реактивно повторять сложное движение пуансона 1, обкатываясь в том же направлении и совершая вынужденные колебания с частотой, определяемой демпфирующими (рассеивание) свойствами материала заготовки 6.

При деформировании обкатыванием заготовки 6 включают привод вращения толкателя 5, производя его циклическое вращение по кривой, имеющей форму логарифмической спирали, причем возрастание спиралей перемещения пуансона 1 и толкателя 5 производят в одном направлении, что обеспечивает регламентированное аккумулирование энергии пуансона 1 в спиральных массивах материала заготовки 6 и последующее “наматывание” этой энергии на себя сферодинамическим модулем 3 на стадии его деформационного резонанса.

Однонаправленное спиралеобразное перемещение пуансона 1 и толкателя 5 позволяет сферодинамическому модулю 3 принимать на себя “сброс” ранее аккумулированной материалом заготовки 6 энергии активного источника деформирования – пуансона 1 и формировать в спиральных массивах материала заготовки 6 зоны с “искусственным интеллектом”.

Источник инфомации

Патент РФ №2130357, В 21 J 5/08, В 21 D 37/12, 1998 г.

Формула изобретения

Способ сферодинамической нанорезонансной обработки материалов, характеризующийся тем, что включает размещение цилиндрической заготовки в полости матрицы на сферодинамическом флуктуационном модуле с опорой на толкатель и деформирование ее обкатным пуансоном, при этом обкатному пуансону и толкателю сообщают перемещение по кривым, имеющим форму возрастающей в одном направлении логарифмической спирали.

РИСУНКИ

Categories: BD_2285000-2285999