Патент на изобретение №2284312
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ ИЗ ОКСИДОВ УГЛЕРОДА И ВОДОРОДА
(57) Реферат:
Использование: нефтехимия. Сущность: синтез-газ, содержащий Н2, СО и СО2, контактируют в первой реакционной зоне с бифункциональным катализатором, состоящим из металлоксидного компонента состава, мас.%: ZnO – 65-70, Cr2О3 – 29-34, W2O5 – не более 1 и кислотного компонента, состоящего из цеолита со структурой ZSM-5 или ZSM-11, цеолита типа бета или кристаллического силикоалюмофосфата со структурой SAPO-5, при мольном отношении SiO2/Al2O3 не более 200, а во второй реакционной зоне используют монофункциональный кислотный катализатор, содержащий цеолит со структурой ZSM-5 или ZSM-11, имеющий мольное отношение SiO2/Al2O3 не более 200. Технический результат: повышение селективности по С5+ углеводородам и увеличение выхода С5+ углеводородов на поданный синтез-газ. 6 з.п. ф-лы., 2 табл.
Изобретение относится к органической химии, а именно, к способам получения углеводородов и, в частности, к получению С5+ углеводородов каталитической конверсией смеси СО, Н2 и CO2 (далее именуемой синтез-газом). Получаемые при этом жидкие углеводородные фракции могут быть использованы в качестве автобензинов с низким содержанием бензола. Известен способ получения С5+ углеводородов из газа, содержащего H2 и СО, путем контактирования газа при температуре 220-400°С, давлении 10-100 атм, объемной скорости подачи исходного синтез-газа 100-5000 ч-1 и мольном отношении Н2/СО, равном 1-3, с катализатором, содержащим смесь железосодержащего катализатора синтеза Фишера-Тропша в окисленной или восстановленной форме, промотированного оксидами алюминия, кремния, щелочных или щелочно-земельных металлов, и кислотного компонента (патент №2204546 РФ, кл. С 07 С 1/04, 2003 [1]). Согласно данному способу получаемые жидкие углеводородные смеси имеют повышенное содержание изо-парафинов и олефинов, а также умеренное (не более 35% мас.) содержание ароматических углеводородов. Известен также способ одностадийной конверсии синтез-газа, имеющего мольное отношение H2/CO>1,9, в углеводороды, кипящие в интервале бензиновой и дизельной фракций, на смешанном трифункциональном катализаторе, состоящим из катализатора синтеза Фишера-Тропша (железосодержащий, промотированный оксидами алюминия, кремния, щелочных и щелочно-земельных металлов или кобальтовый), катализатора конверсии метанола в углеводороды (цеолит типа ZSM-5 или силикалит с содержанием SiO2>99%) и катализатора синтеза метанола (на основе оксидов меди и цинка) (патент №5344849 США, кл. С 07 С 1/04, 1994 [2]). Использование данного катализатора в приведенных в способе [2] условиях (давление 7-70 атм, температура 200-400°С) позволяет из синтез-газа, имеющего мольное отношение Н2/СО>1,9, получить углеводородные смеси, кипящие в интервале бензиновой и дизельной фракций, состоящие, главным образом, из парафиновых и олефиновых углеводородов и содержащие ароматические углеводороды в пределах 9-20% мас. Основными общими недостатками способов [1] и [2] являются высокое содержание олефинов (до 16% мас. [2] и более [1]) и н-парафинов (18-24% мас. [2] и более [1]) в С5+ углеводородах при сравнительно низком содержании в них ароматических углеводородов (до 20% мас. [2] и не более 35% мас. [1]). В обоих способах целевыми продуктами являются низкооктановый бензин (до 90% мас. в С5+) с ОЧ 66-77 ИМ [2] и до 80-82 ИМ [1] и дизельная фракция углеводородов (от 10% мас. [2] и выше [1]), которая только после дополнительной стадии гидрирования олефинов может быть использована как высокоцетановое дизельное топливо. Известен способ получения углеводородных бензиновых фракций из газа, содержащего Н2 и CO2 или Н2, CO2 и СО, путем контактирования газа при температуре 320-440°С, давлении 40-100 атм и объемном отношении Н2/(СО+CO2), равном 1-3, с катализатором, содержащим цеолит типа ZSM-5 или ZSM-11 и металлоксидный компонент, включающий оксиды цинка, меди и/или хрома (патент №2089533 РФ, кл. С 07 С 1/12, С 10 G 2/00, 1997 [3]). Согласно данному способу целевыми продуктами превращения смеси Н2, CO2 (и в отдельных примерах СО) являются жидкие бензиновые фракции углеводородов с высоким (от 40 до 84 мас.%) содержанием ароматических углеводородов. Основными недостатками способа [3] являются низкие выходы (40-120 г/нм3 синтез-газа) и производительность процесса по бензиновой фракции (20-125 г/л кат-ра/ч), а также дополнительный расход дорогостоящего водорода на восстановление СО2 до СО. Близким к изобретению является способ получения углеводородных бензиновых фракций из синтез-газа, содержащего Н2, СО и CO2 и имеющего объемное отношение Н2/(СО+CO2), равное 1-3, путем контактирования газа при температуре 320-440°С, давлении 40-100 атм с катализатором, содержащим цеолит типа ZSM-5 и металлоксидный компонент (патент №2175960 РФ, кл. С 07 С 1/04, 2001, [4]). В данном способе используют циркуляцию газового потока после реактора с объемным отношением количества циркулирующего газа к исходному синтез-газу, равным 0,1-1000, а процесс проводят при объемной скорости подачи исходного синтез-газа 200-5000 ч-1, объемных отношениях в исходном синтез-газе СО/CO2 больше 4 и Н2/CO2 больше 11. Согласно данному способу жидкими продуктами превращения синтез-газа являются бензиновая фракция (С5-С10углеводороды) и вода, содержащая метанол от 1 до 10% мас. В данном способе [4] имеются недостатки: 1) сравнительно низкое содержание ароматических углеводородов в С5+ углеводородах, не превышающее 30% мас., что затрудняет получение товарных автобензинов с 04 более 90 ИМ; 2) высокое остаточное содержание метанола в воде – от 1 до 10% мас. В предлагаемом изобретении по сравнению с ближайшим аналогом [4] отмечено повышение селективности по ароматическим углеводородам (до 45-50% мас. и более) и снижение метанола в воде до концентрации менее 1% мас. Наиболее близким к предлагаемому по своей технической сущности является способ получения моторных топлив путем каталитической конверсии смеси Н2 и СО или смеси СО, На и СО2 при повышенных температурах и давлении в две стадии (патент №2143417 РФ, кл. С 07 С 1/04, 1999 [5]). Согласно выбранному прототипу на первой стадии исходное сырье контактирует с катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного компонента, содержащего (мас.%) CuO – 38-64, ZnO – 24-34, Cr2O3 – 0-22, Al2О3 – 6-9, смешанных в массовом соотношении 20-50/80-50, газовый поток после реактора первой стадии без разделения направляют на вторую стадию, где при контакте с катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного копонента, содержащего (мас.%) ZnO – 65-70, Cr2O3 – 29-34, W2O3 – 1, смешанных в соотношении 30-99/70-1, происходит превращение диметилового эфира и компонентов синтез-газа в бензиновую фракцию, газообразные углеводороды и водную фракцию. Основным недостатком представленного прототипа является низкая селективность по С5+ углеводородам (63-74% мас.) и невысокий выход С5+ углеводородов на поданный синтез-газ (114-137 г/нм3). Задачей настоящего изобретения является повышение селективности по С5+ углеводородам и увеличение выхода C5+ углеводородов на поданный синтез-газ. Поставленная задача решается тем, что в способе получения углеводородных бензиновых фракций из синтез-газа, содержащего Из, СО и СО2, путем последовательного контактирования газа по меньшей мере в двух реакционных зонах при повышенных температурах и давлении с бифункциональным катализатором в первой реакционной зоне, состоящим из кислотного и металлоксидного компонентов, используют металлоксидный компонент, содержащий оксиды металлов состава, мас.%: ZnO – 65-70, Cr2О3 – 29-34, W2O5 – не более 1 и в качестве кислотного компонента бифункционального катализатора используют цеолит со структурой ZSM-5 или ZSM-11, цеолит типа бета или кристаллический силикоалюмофосфат со структурой SAPO-5, а во второй реакционной зоне используют монофункциональный кислотный катализатор, содержащий цеолит со структурой ZSM-5 или ZSM-11. Задача решается также тем, что кислотный компонент бифункционального катализатора имеет мольное отношение SiO2/Al2O3 не более 200. Задача решается также тем, что что цеолит монофункционального кислотного катализатора имеет мольное отношение SiO2/Al2O3 не более 200. Задача решается также тем, что контактирование газа в первой реакционной зоне проводят при давлении 40-100 атм и температуре 340-420°С. Задача решается также тем, что контактирование газа во второй реакционной зоне проводят при давлении 40-100 атм и температуре 320-460°С. Задача решается также тем, что процесс проводят при объемной скорости подачи исходного синтез-газа 200-5000 ч-1 и объемных отношениях в исходном синтез-газе Н2/(СО+CO2)=1-3, СО/CO2>2 и Н2/CO2>6. Задача решается также тем, что процесс проводят при циркуляции газового потока с объемным отношением количества циркулирующего газа к исходному синтез-газу, равным 1-1000. Отличительными признаками изобретения являются: 1) в первой реакционной зоне используют металлоксидный компонент бифункционального катализатора, содержащий, мас.%: ZnO – 65-70, Cr2O3 – 29-34, W2O5 – не более 1; 2) в качестве кислотного компонента бифункционального катализатора используют цеолит со структурой ZSM-5 или ZSM-11, цеолит типа бета или кристаллический силикоалюмофосфат со структурой SAPO-5, имеющие мольное отношение SiO2/Al2O3 не более 200; 3) во второй реакционной зоне применяют монофункциональный кислотный катализатор, содержащий цеолит со структурой ZSM-5 или ZSM-11, имеющий мольное отношение SiO2/Al2O3 не более 200; 4) контактирование газа в первой реакционной зоне проводят при давлении 40-100 атм и температуре 340-420°С; 5) контактирование газа во второй реакционной зоне проводят при давлении 40-100 атм и температуре 320-460°С; 6) процесс проводят при объемной скорости подачи исходного синтез-газа 200-5000 ч-1, имеющего объемные отношения Н2/(СО+CO2), равные 1-3, СО/CO2>2 и Н2/CO2>6; 7) процесс проводят при циркуляции газового потока с объемным отношением количества циркулирующего газа к исходному синтез-газу, равным 1-1000. Выбор катализатора для конверсии синтез-газа в углеводородные продукты основан на том, что в диапазоне температур 340-420°С комбинация металлоксидного катализатора синтеза метанола и кислотного компонента позволяет снять термодинамическое ограничение реакции синтеза метанола за счет реакций образования ароматических углеводородов и изо-парафинов. Поэтому, в настоящем изобретении для получения бензиновой фракции углеводородов использованы бифункциональные катализаторы в состав которых включены оксиды Zn, Cr и W, превращающие синтез-газ в метанол при температурах 340-420°С, а в качестве кислотного компонента бифункциональных катализаторов применены высококремнеземистые цеолиты со структурой ZSM-5 или ZSM-11, цеолит типа бета или кристаллический силикоалюмофосфат со структурой SAPO-5. Во время длительного пробега происходит постепенное закоксование кислотного компонента бифункционального катализатора, сопровождаемое снижением селективности по ароматическим углеводородам и ростом содержания метанола в продуктах реакции. Снижение уровня ароматики в бензиновой фракции углеводородов ниже определенного минимального предела может привести к ухудшению антидетонационных свойств товарного бензина. Повышение содержания метанола в продуктах реакции создает дополнительные проблемы по его удалению из образующейся в процессе синтеза воды, а также приводит к увеличению расхода исходного синтез-газа. В настоящем изобретении с целью стабилизации показателей процесса используют для контактирования газа во второй реакционной зоне монофункциональный кислотный катализатор, позволяющий предотвратить «проскок» метанола и сохранить селективность по ароматическим углеводородам на уровне, достаточном для поддержания высокого октанового числа полученного бензина. Выбор условий проведения процесса синтеза бензиновой фракции из газа, содержащего Н2, СО и CO2, обусловлен следующими факторами. Повышенное давление необходимо для более глубокого превращения синтез-газа. Нижняя граница температурного интервала работы бифункционального катализатора (340°С) определена по минимальной активности катализатора, превышение верхнего предела температуры (420°С) приводит к снижению срока службы металлоксидного компонента бифункционального катализатора. Контактирование газа с монофункциональным кислотным катализатором во второй реакционной зоне в зависимости от величины «проскока» метанола и длительности работы кислотного катализатора проводят при температуре от 320 до 460°С. Объемная скорость подачи исходного синтез-газа определяется активностью используемого бифункционального катализатора при фиксированном давлении и температуре. Соотношение между Н2 и СО, а также между СО и CO2, определяется стехиометрией протекания химических реакций синтеза углеводородов. Исходя из теоретических предпосылок эксперименты проводились в условиях, достаточно близких к стехиометрическому соотношению между “С”, “О” и “Н” и поэтому благоприятных для синтеза метанола и его конверсии в углеводороды С5-С10. Ранее нами было показано [3], что при высоких концентрациях CO2 в синтез-газе (выше 10% об.) снижается выход бензиновой фракции углеводородов и производительность бифункционального катализатора. Поэтому в предлагаемом способе было введены нижние, пределы содержания CO2 в синтез-газе в виде объемных отношений СО/СО2>2 и Н2/CO2>6. Важная роль в достижении высокой селективности и производительности процесса по С5+ углеводородам принадлежит циркуляции газового потока после сепарации жидких продуктов. Во-первых, постоянное удаление воды и жидких углеводородов из контактирующего газа в значительной степени подавляет реакцию образования малоактивного диоксида углерода и снижает скорость протекания реакций крекинга C5+ углеводородов. Во-вторых, высокие линейные скорости циркулирующего газового потока в сочетании с постоянным уносом избыточного тепла из зоны катализа положительно влияют на распределение температуры в реакторе, улучшают протекание процессов теплопередачи и массообмена. Циркуляция газового потока с объемным отношением количества циркулирующего газа к исходному синтез-газу (кратность циркуляции) может быть равна от 1 до 1000, но лучше иметь значение кратности циркуляции в пределах 5-400. Пример 1 (по прототипу). Синтез-газ состава (об.%): H2 – 68, СО – 29 и CO2 – 3 поступает на установку с объемной скоростью 2300 ч-1 (в расчете на суммарный объем катализаторов 1-й и 2-й стадии), смешивается с циркуляционным газом перед входом в реактор синтеза диметилового эфира (ДМЭ) и полученная газовая смесь контактирует с катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного компонента, содержащего (мас.%) CuO – 62, ZnO – 30, Al2O3 – 8, смешанных в массовом соотношении 35/65, при температуре 300°С и давлении 80 атм. В реакторе оксиды углерода и водород превращаются в ДМЭ с селективностью, превышающей 90%. Газовый поток после реактора синтеза ДМЭ без выделения продуктов направляют на вторую стадию, где при контакте с катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного компонента, содержащего (мас.%) ZnO – 67, Cr2O3 – 32, W2O5 – 1, смешанных в массовом соотношении 30/70, при температуре 400°С и давлении 80 атм происходит превращение ДМЭ, оксидов углерода и водорода в бензиновую фракцию, газообразные углеводороды и водную фракцию (более 98 мас.% Н2O). Конверсия ДМЭ более 99%; суммарное превращение компонентов синтез-газа (“вход – выход” из установки) составляет не менее 90%. Газовый поток после реактора второй стадии охлаждают и в сепараторе отделяют жидкие продукты – сконденсировавшиеся углеводороды, воду и метанол – от газовой фазы. Жидкие продукты последовательно разделяют на бензиновую фракцию, метанольную воду и углеводороды С3-С4. Для предотвращения накопления легких углеводородов часть газового потока после сепаратора постоянно выводится из циркуляционного контура, а основной газовый поток смешивается с синтез-газом и поступает в реактор синтеза ДМЭ. Условия проведения и основные показатели опыта показаны в таблице 1. Промышленная применимость изобретения иллюстрируется примерами 2-15. Пример 2. Синтез-газ поступает на установку с объемной скоростью 820 ч-1 (в расчете на суммарный объем катализаторов), смешивается с циркуляционным газом перед входом в реактор синтеза углеводородов и полученная газовая смесь контактирует в 1-й реакционной зоне с бифункциональным катализатором, состоящим из цеолита типа ZSM-5 и металлоксидного компонента при температуре 400°С и давлении 80 атм. Газовый поток после контактирования с бифункциональным катализатором без выделения продуктов направляют во 2-ю реакционную зону, где при контакте с монофункциональным катализатором, содержащим цеолит типа ZSM-5, при температуре 400°С и давлении 80 атм происходит дополнительное превращение углеводородов, метанола и ДМЭ с образованием высокооктанового бензина (С5+), С1-С4 углеводородов и воды. Газовый поток после контактирования охлаждают и в сепараторе отделяют жидкие продукты от газовой фазы. Жидкие продукты последовательно разделяют на бензиновую фракцию, метанольную воду и растворенные в них CO2 и углеводороды С3-С4. Для предотвращения накопления метана и легких углеводородов часть газового потока после сепаратора постоянно выводится из циркуляционного контура, а основной газовый поток смешивается с исходным синтез-газом и поступает в реактор синтеза углеводородов. Объемные соотношения компонентов в исходном синтез-газе, условия проведения и основные показатели опыта показаны в таблице 1. Мольные отношения SiO2/Al2О3 в кислотном компоненте бифункционального катализатора и в цеолите монофункционального катализатора представлены в таблице 2. Примеры 3-10. Аналогичны примеру 2. Объемные соотношения компонентов в исходном синтез-газе, условия проведения и основные показатели опытов показаны в таблице 1. Пример 11. Аналогичен примеру 2. Отличается тем, что в качестве бифункционального катализатора используют композицию, состоящую из цеолита типа ZSM-11 и металлоксидного компонента. Объемные соотношения компонентов в исходном синтез-газе, условия проведения и основные показатели опыта показаны в таблице 1. Пример 12. Аналогичен примеру 2. Отличается тем, что в качестве монофункционального катализатора используют цеолит типа ZSM-11. Объемные соотношения компонентов в исходном синтез-газе, условия проведения и основные показатели опыта показаны в таблице 1. Пример 13. Аналогичен примеру 2. Отличается тем, что в качестве бифункционального катализатора используют композицию, состоящую из цеолита типа бета и металлоксидного компонента. Объемные соотношения компонентов в исходном синтез-газе, условия проведения и основные показатели опыта показаны в таблице 1. Примеры 14-15. Аналогичны примеру 2. Отличаются тем, что в качестве бифункционального катализатора используют композицию, состоящую из кристаллического силикоалюмофосфата со структурой SAPO-5 и металлоксидного компонента. Объемные соотношения компонентов в исходном синтез-газе, условия проведения и основные показатели опытов показаны в таблице 1. Как видно из представленных в таблице 1 результатов, предлагаемый способ позволяет получить C5+ углеводороды с содержанием 20-60% мас. ароматики и имеет преимущества по сравнению с прототипом: 1) селективность образования С5+ углеводородов выше в среднем на 10-11%; 2) выход С5+ углеводородов в расчете на исходный синтез-газ в 1,1-1,2 раза выше.
Формула изобретения
1. Способ получения углеводородных бензиновых фракций из синтез-газа, содержащего Н2, СО и СО2, путем последовательного контактирования газа по меньшей мере в двух реакционных зонах при повышенных температурах и давлении с бифункциональным катализатором в первой реакционной зоне, состоящим из кислотного и металлоксидного компонентов, отличающийся тем, что металлоксидный компонент бифункционального катализатора содержит оксиды металлов состава, мас.%: ZnO – 65-70; Cr2O3 – 29-34; W2O5 – не более 1, и в качестве кислотного компонента бифункционального катализатора используют цеолит со структурой ZSM-5 или ZSM-11, цеолит типа бета или кристаллический силикоалюмофосфат со структурой SAPO-5, а во второй реакционной зоне используют монофункциональный кислотный катализатор, содержащий цеолит со структурой ZSM-5 или ZSM-11. 2. Способ по п.1, отличающийся тем, что кислотный компонент бифункционального катализатора имеет мольное отношение SiO2/Al2O3 не более 200. 3. Способ по п.1, отличающийся тем, что цеолит монофункционального кислотного катализатора имеет мольное отношение SiO2/Al2O3 не более 200. 4. Способ по п.1, отличающийся тем, что контактирование газа в первой реакционной зоне проводят при давлении 40-100 атм и температуре 340-420°С. 5. Способ по п.1, отличающийся тем, что контактирование газа во второй реакционной зоне проводят при давлении 40-100 атм и температуре 320-460°С. 6. Способ по п.1, отличающийся тем, что процесс проводят при объемной скорости подачи исходного синтез-газа 200-5000 ч-1 и объемных отношениях в исходном синтез-газе Н2/(СО+CO2)=1-3, СО/CO2>2 и Н2/CO2>6. 7. Способ по п.1, отличающийся тем, что процесс проводят при циркуляции газового потока с объемным отношением количества циркулирующего газа к исходному синтез-газу, равным 1-1000.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||