Патент на изобретение №2283891
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ХЛАДОСТОЙКАЯ СТАЛЬ
(57) Реферат:
Изобретение относится к области металлургии, а именно к хладостойким сталям. Предложена хладостойкая сталь для машин и аппаратов, в частности нефте- и газодобывающей промышленности, эксплуатирующихся в условиях климатического холода. Сталь содержит в мас.%: углерод 0,15-0,22, марганец 0,3-0,6, кремний 0,15-0,40, ванадий 0,08-0,12, титан 0,001-0,040, ниобий 0,001-0,040, алюминий 0,03-0,06, сера 0,010-0,020, фосфор 0,010-0,020, церий 0,005-0,05, кальций 0,001-0,01, барий 0,001-0,01, железо – остальное. При использовании изобретения повышается прочность и хладостойкость стали. 5 табл.
Изобретение относится к металлургии, а именно к разработке сталей для машин и аппаратов, в частности нефте- и газодобывающей промышленности, эксплуатирующихся в условиях климатического холода, обладающих высоким уровнем хладостойкости и механических свойств, обеспечивающих высокую эксплуатационную надежность оборудования в ходе его длительной эксплуатации при отрицательных температурах. Одним из основных материалов, применяемых при изготовлении оборудования по добыче нефти и газа, являются качественные углеродистые стали, такие как сталь 10 и 20, выпускаемые по ГОСТ 1050-88. Однако минимально разрешенная температура эксплуатации оборудования, изготовленного из этих сталей, ограничена Правилами по устройству и безопасной эксплуатации оборудования ГГТН РФ температурой минус 40°С, в то время как в северных районах Российской Федерации температура в зимние месяцы может опускаться ниже отметки в минус 60°С. Еще одной особенностью эксплуатации нефте- и газодобывающей и перерабатывающей промышленности является повышение единичной мощности оборудования и, как следствие, значительное повышение требований к прочностным свойствам применяемых материалов. Однако повышение прочности стали приводит к снижению запасов ее вязкости, пластичности, трещино- и хладостойкости. Частично эта проблема решается заменой менее дорогих углеродистых сталей на более дорогостоящие легированные марки, однако такая замена приводит к значительному повышению стоимости вновь выпускаемого оборудования, снижению его конкурентоспособности. Это требует изыскания альтернативных путей повышения прочности и хладостойкости уже применяемых материалов. Таким путем повышения прочности и хладостойкости сталей является регулирование размеров зерен в сталях, что может быть достигнуто как изменением режима ее термической обработки, например, заменой режима окончательной термической обработки с нормализации углеродистых сталей на режим термоциклирования, введение в сталь микролегирующих добавок, сдерживающих рост зерна стали, при высокотемпературных обработках. Прочностные свойства углеродистых сталей, в том числе их предел текучести, напрямую зависят от их структурного состояния, в том числе от размеров и состава отдельных зерен, наличия дисперсных избыточных фаз – их формы, размеров, места расположения. Рассчитать величину предела текучести стали, как поликристаллического тела, состоящего из однородных зерен твердого раствора, представляется возможным, применяя уравнение Петча-Холла:
где Таким же образом представляется возможным рассчитать влияние размера действительного зерна стали на ее хладостойкость. Согласно теории Коттрелла-Петча при упрочнении матрицы ОЦК-сплавов их склонность к хрупкому разрушению должна возрастать в соответствии с критерием перехода: ( Подставляя выражение (2) в уравнение Петча-Холла, получим:
где G – модуль упругости при сдвиге, Tхр=M+Nln d-1/2, где М и N – соответствующие коэффициенты. Положительное влияние уменьшения размеров зерна на температуру вязкохрупкого перехода может быть объяснено более равномерным распределением примесных элементов в границах измельченных зерен, меньшими величинами зернограничных сегрегации примесных атомов, и, в первую очередь, меньшей величиной зернограничной сегрегации атомов фосфора, элемента, оказывающего решающее влияние на температуру вязкохрупкого перехода. Однако, не смотря на имеющиеся теоретические обоснования по выбору марок сталей, их термической обработки и путям повышения надежности и долговечности таких материалов, до настоящего времени, не сложилось единой концепции по оптимизации выбора сталей для оборудования, эксплуатируемого в условиях северных регионов страны. Также отсутствуют научно-обоснованные рекомендации по технологии выплавки, раскисления сталей для северных регионов страны и назначения режимов их термической обработки. Уменьшить размер зерна сталей возможно оптимальной технологией выплавки, микролегированием, использованием редкоземельных и щелочно-земельных металлов с целью глобуляризации не металлических включений. Важную роль играет оптимизация режима термической обработки. Исходя из необходимости обеспечения повышенной прочности сталей, при условии сохранения высокого уровня сопротивления хрупкому разрушению и хладостойкости наиболее перспективной для разработки оптимального состава является группа углеродистых сталей, в состав которых были введены микролегирующие добавки одного или нескольких элементов из группы ванадия, циркония, ниобия и титана. Проведен анализ влияния легирования стали этими элементами, а также роль добавок РЗМ и ЩЗМ. Учитывая, что основными требованиями к сталям, эксплуатируемым в условия климатического холода, является повышенная прочность при сохранении максимально низкой температуры вязкохрупкого перехода именно эти параметры были выбраны при оптимизации состава стали. Известны стали, близкие по составу к заявляемой, – сталь для свариваемых конструкций с вязкостью околошовной зоны, не зависящей от энергии сварки, и способа изготовления стали. Заявка 1143023 ЕПВ, МПК7 С 22 С 38/00, С 21 С 7/00 Nipon Steel Corp., Uemori Ryuji, Tomita Yukio, Hara Takaja, Aihara Shuji, Saitoh Naoki. № 00966448.3. Заявл. 12.10.2000, опубл. 10.10.2001, приор. 12.10.1999, № 28941299 (Япония). Англ. Конструкционная сталь: Пат. 30639 Украина, МПК6 С 22 С 38/44. Курдюков А.А., Бобильов М.В., Носоченко О.В., Мельник С.Г., Буга И.Д., Чанаяж М.И., Сагиров И.В., Кукуш С.Ф. № 98031619, Заявл. 31.03.1998; Опубл. 15.12.2000. Укр. Сталь: Пат. 2217520 Россия, МПК7 С 22 С 38/54 Федченко Ю.А., Могильников О.В., Робозеров Н.В., Сулацков В.И., Шахмин С.И., Сударенко B.C. № 2002103562/02; Заявл. 08.02.2002; Опубл. 27.11.2003. Рус. Конструкционная сталь: Пат. 60653 Украина, МПК7 С 21 С 5/00, Рабинович О.В., Трегубенко Г.М., Тарасьев М.И., Игнатов М.В., Пучиков О.В., Заславський Ю.Б., Бубликов Ю.О. № 2003010641; Заявл. 24.01.2003; Опубл. 15.10.2003. Укр. Сталь для свариваемых конструкций Сато Сэй, Хадзи Тосиаки, Каная Кэн. Заявка 57-207156, Япония, Заявл. 12.06.81, № 56-90444, опубл. 18.12.82. МКИ С 22 С 38/14, С 22 С 38/54. Сталь. Насибов А.Г., Матросов Ю.И., Литвиненко Д.А., Голованенко С.А., Авт. св.СССР, кл. С 22 С 38/16, № 755881, заявл. 16.02.78, № 2582838, опубл. 15.08.80. Сталь пат. № 2025532, Россия, МКИ5 С 22 С 38/14. Смирнов Л.А, Панфилов Л.М., Срогович М.И., Соколова Г.И. № 5042113/02; Заявл. 15.02.92; Опубл. 30.12.94. Бюл. № 24. Поверхностно-упрочняемая легированная сталь и изделия, изготовляемые из нее. Пат. США, кл. 75/124 (С 22 С 38/42, С 22 С 38/44), № 4157258, заявл. 18.08.78, №935003, опубл. 5.06.79 Из известных сталей, наиболее близкой по составу к заявляемой, и выбранной в качестве прототипа, является сталь Сталь: Пат. 2179196 Россия, МПК7 С 22 С 38/14. ОАО «Северсталь», Дьяконова B.C., Латышева Т.О., Зинченко С.Д., Меньшикова Г.А., Медведев А.П., Тетюева Т.В., Прохоров Н.Н., Осипов М.Л., Нам О.С. № 99127777/02; Заявл. 28.12.1999; Опубл. 10.02.2002, имеющая следующий состав мас.% углерод – 0,05-0,15; кремний 0,30-0,90; марганец – 0,40-0,90; сера – 0,001-0,020; фосфор – 0,005-0,020; титан – 0,001-0,040; ванадий – 0,05-0,20; алюминий – 0,01-0,08; ниобий – 0,01-0.08. Проведенные исследования показали, что сталь-прототип не обладает достаточным запасом механических свойств и износостойкости. Техническим результатом данной работы является повышение прочности и хладостойкости стали. При установлении необходимого соотношения компонентов исходили из следующих предпосылок. Понижение содержания углерода ниже 0,15% не обеспечивает требований по прочностным характеристикам стали, увеличение же содержания углерода свыше 0,22% ухудшает свариваемость, затрудняет обрабатываемость стали. Содержание кремния менее 0,15% не обеспечивает удовлетворительного раскисления стали, что может способствовать образованию пористости. Повышение концентрации кремния свыше 0,4% повышает вероятность образования зернограничных сегрегаций этого элемента, и, как следствие, приводит к охрупчиванию стали при низких температурах. Марганец способствует измельчению зерен в стали, повышает прочность твердого раствора, обеспечивает раскисление. Концентрация марганца менее 0,3% не удовлетворяет требованиям по раскислению стали, приводит к возникновению в границах зерен стали сегрегаций серы, а повышение свыше 0,6% увеличивает склонность к образованию холодных трещин при сварке, повышению температуры вязкохрупкого перехода. Сера и фосфор являются наиболее опасными с точки зрения развития хрупких дефектов примесями в углеродистых и легированных сталях. Их содержание более 0,020% каждого способствует интенсификации развития зернограничных сегрегаций, снижающих когезию границ зерен, содержание менее 0,010% серы и 0,010% фосфора – технически крайне сложно и резко повышает стоимость материала. Легирование ванадием, ниобием и титаном в пределах его растворимости в феррите приводит к резкому измельчению зерна стали, повышению ее прочностных свойств, увеличивает трещиностойкость, снижает вероятность развития зерногроничных сегрегаций примесных атомов, предупреждает рост зерна при технологических нагревах и термической обработке. Введение в состав стали алюминия, ЩЗМ и РЗМ связанно с их высокой раскислительной, рафинирующей и модифицирующей способностью. Снижение содержания газов, серы, глобуляризация неметаллических включений обеспечивают высокий уровень трещиностойкости, предохраняя сталь от хрупкого разрушения. Сфероидизация неметалических включений сопровождается очищением межзеренных границ и равномерным распределением включений в металле. Заявляемая сталь содержит компоненты при следующем соотношении, мас.% Углерод 0,15-0,22 Марганец 0,3-0,6 Кремний 0,15-0,40 Ванадий 0,08-0,12 Титан 0,001-0,040 Ниобий 0,001-0,040 Алюминий 0,03-0,06 Сера 0,010-0,020 Фосфор 0,010-0,020 Церий 0,005-0,05 Кальций 0,001-0,01 Барий 0,001-0,01 Железо – остальное. Были проведены исследования размеров действительных зерен механических свойств и хладостойкости стали-прототипа и заявляемой стали. Для испытаний механических свойств были изготовлены образцы для испытаний на статическое растяжение по ГОСТ 1497. Испытания на ударную вязкость и хладостойкость (переходную температуру вязкохрупкого перехода) проводили на образцах типа 11 по ГОСТ 9454, оценка размеров действительных зерен проводилась в соответствии с ГОСТ 5639, анализ химического состава границ зерен и определение величины зернограничных сегрегаций были проведены методом – ОЭС (Оже-электронной спектроскопии). Чувствительность метода составляет 10-1-10-2%, точность анализа 5-10% с разрешением по глубине в пределах 3-30 Å. Исследования проводили на ESCA/AES спектрометре PHJ-548. К. Опытная сталь имеет высокие показатели прочности, пластичности и ударной вязкости. Обнаружено измельчение зерна стали и уровня зернограничных сегрегаций примесных элементов, в первую очередь фосфора, в границах зерен стали. Исследования ударной вязкости при пониженных температурах показали значительное снижение температуры вязкохрупкого перехода. Таким образом, заявляемая сталь может быть использована для изготовления узлов и деталей машин, механизмов и агрегатов, работающих в условиях низких температур климатического холода самых холодных регионов страны – Сибири, Крайнего Севера и Сахалина. Сталь-прототип и плавки заявляемой стали с разными составами на верхнем и нижнем уровнях содержания легирующих элементов были выплавлены в открытой высокочастотной индукционной печи емкостью 100 кг с основной футеровкой под флюсом состава 92% CaF2, 3,5% СаО, 2% SiO2, 1,8% Al2O3 и ряд микродобавок. Были изготовлены образцы заявляемой стали четырех составов (табл.1). Температура расплава плавок заявляемой стали и стали-прототипа перед выпуском находилась в пределах 1500-1550°С. Определение состава опытных плавок проводили обычным химическим методом и анализом материала на квантометре фирмы «Philips». Проверку полученных результатов производили методом вакуум-плавления в ОАО «Ижорские заводы».
Каждая из опытных плавок была разлита на четыре слитка массой по 25 кг каждая. Перед обработкой давлением слитки подвергали обдирке, а их прибыльные и донные части удалялись. Ковку осуществляли на молоте с усилием в 1 т. Температурный интервал ковки составлял 1200-1170°С. Нагрев производили со скоростью не более 50 К в час до температуры 1250-1280 К. При этой температуре давалась двухчасовая выдержка. Далее без ограничения скорости температуру поднимали до 1470±10 К и выдерживали слитки при этой температуре в течение 2 ч. Нагрев контролировали хромельалюмелевой термопарой. Подача под боек молота не превышала 80-100 мм за один раз. При понижении температуры заготовки до 1180±10 К ее помещали в печь с температурой 1470 К и выдерживали в ней 1 час. Перед термической обработкой поковки разрезали на заготовки под образцы для необходимых видов испытания. При изготовлении образцов, использовались заготовки 14×14×500 мм. Полученные заготовки образцов подвергали термической обработке. Нагрев заготовок производили в лабораторных печах типа «СНОЛ». Результаты испытаний механических свойств заявляемой стали и стали-прототипа приведены в табл.2. В табл.3 приведены величины переходной температуры вязкохрупкого перехода, определенной по соотношению вязкой и хрупкой составляющей на поверхности излома – (Т50).
Повышение механических свойств и повышение хладостойкости заявляемой стали, по отношению к свойствам стали-прототипа, следует связывать с измельчением зерна стали за счет оптимального микролегирования (табл.4). Также улучшение этих характеристик следует связывать с уменьшением суммарной концентрации примесных элементов в границах зерен стали (зернограничных сегрегаций), а также значительным снижением содержания в границах самой опасной с точки зрения хладостойкости стали примеси – фосфора (табл.5)
Таким образом, разработана марка хладостойкой стали, предназначенная для машин и аппаратов, в частности нефте- и газодобывающей промышленности, эксплуатирующихся в условиях климатического холода, обладающая высоким уровнем хладостойкости и механических свойств и обеспечивающая высокую эксплуатационную надежность оборудования в ходе его длительной эксплуатации при отрицательных температурах.
Формула изобретения
Хладостойкая сталь для машин и аппаратов, в частности нефте- и газодобывающей промышленности, эксплуатирующихся в условиях климатического холода, содержащая углерод, марганец, кремний, ванадий, титан, ниобий, алюминий, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит церий, кальций и барий при следующем соотношении компонентов, мас.%:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||