Патент на изобретение №2156380

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2156380 (13) C1
(51) МПК 7
F04D17/04
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 07.06.2011 – прекратил действие

(21), (22) Заявка: 99106717/06, 29.03.1999

(24) Дата начала отсчета срока действия патента:

29.03.1999

(45) Опубликовано: 20.09.2000

(56) Список документов, цитированных в отчете о
поиске:
SU 1314144 А1, 30.05.1987. SU 901642 А, 30.01.1982. SU 1106923 А, 07.08.1984. SU 1437578 А1, 15.11.1988. EP 0132793 А1, 13.02.1985. DE 3016438 А1, 05.11.1981.

Адрес для переписки:

610017, г.Киров, Октябрьский пр-т 133, ВГСХА, патентный отдел, патентоведу Земцовой А.Н.

(71) Заявитель(и):

Вятская государственная сельскохозяйственная академия

(72) Автор(ы):

Болотов А.К.,
Саитов В.Е.,
Гатауллин Р.Г.

(73) Патентообладатель(и):

Вятская государственная сельскохозяйственная академия

(54) ДИАМЕТРАЛЬНЫЙ ВЕНТИЛЯТОР


(57) Реферат:

Изобретение относится к вентиляторостроению. Может применяться в сельскохозяйственном и промышленном производстве. Диаметральный вентилятор содержит корпус с входным и выходным отверстиями и разделяющей их плоской стенкой, снабженной прямолинейной жалюзийной решеткой, и установленное в корпусе рабочее колесо. Участок корпуса за входной кромкой выполнен жалюзийным длиной 0,4 наружного диаметра рабочего колеса D2, а выше входной кромки корпуса на расстоянии 0,17 D2 установлена сплошная криволинейная плоскость, оканчивающаяся и шарнирно закрепленная на корпусе за жалюзийным участком, образующая всасывающий канал с начальным сечением на входной кромке корпуса. Такое выполнение вентилятора позволит увеличить развиваемые давления в области номинальных производительностей, расход воздуха, а также уменьшить уровень шума. 2 ил.


Изобретение относится к области вентиляторостроения. Может применяться в сельскохозяйственном и промышленном производстве.

Известен диаметральный вентилятор, содержащий спиральный корпус с входным окном и примыкающим к последнему нагнетательным патрубком, и установленное в корпусе лопаточное рабочее колесо. Смежная с окном стенка патрубка выполнена прямолинейной и направлена по касательной к окружности колеса, проведенной в сечении максимального раскрытия спирального корпуса [1].

Однако такой вентилятор не может создать относительно высоких давлений в области номинальных расходов, а также имеет повышенный шум из-за нестабилизированного центра большого вихря и наличия на входной кромке корпуса малого вихря [2].

Известен диаметральный вентилятор, содержащий корпус с входным и выходным отверстиями и разделяющей их плоской стенкой, снабженной со стороны рабочего колеса решеткой, жалюзи которой направлены к рабочему колесу [3].

В данном вентиляторе центр большого вихря, расположенный в области радиального зазора между рабочим колесом и плоской стенкой, стабилизируется жалюзийной решеткой. Стабилизация центра вращения вихря способствует снижению уровня шума и расширению диапазона устойчивой работы диаметрального вентилятора.

Однако, как и в предыдущей конструкции вентилятора сохраняется малый вихрь у входной кромки корпуса диаметрального вентилятора, что также влияет на развиваемые вентилятором давления в области номинальных расходов, а также уменьшает производительность вентилятора.

Цель изобретения – увеличение развиваемых давлений в области номинальных производительностей, увеличение расхода воздуха вентилятором, а также уменьшение уровня шума.

Указанная цель достигается тем, что участок корпуса исходного вентилятора за входной кромкой выполнен жалюзийным длиной 0,4 наружного диаметра колеса D2, жалюзи которого направлены от рабочего колеса, а выше входной кромки корпуса на расстоянии 0,17 D2 установлена шарнирно закрепленная сплошная криволинейная плоскость, оканчивающаяся на корпусе вентилятора в точке O за жалюзийной плоскостью и образующая всасывающий канал с начальным сечением на входной кромке корпуса вентилятора.

В результате анализа литературных источников не обнаружено идентичного выполнения предлагаемой разработки. При этом отличительные от прототипа признаки придают заявляемой совокупности новые свойства, проявляющиеся в положительном эффекте.

На фиг. 1 представлена схема предлагаемого диаметрального вентилятора. Диаметральный вентилятор содержит корпус 1 с входным 2 и выходным 3 отверстиями и разделяющую их прямолинейную жалюзийную стенку 4, а также установленное в корпусе 1 рабочее колесо 5, причем корпус 1 ниже входной кромки 6 снабжен криволинейной жалюзийной решеткой 7, жалюзи которой направлены от рабочего колеса 5, а выше входной кромки 6 корпуса 1 установлена шарнирно закрепленная сплошная криволинейная плоскость 8, оканчивающаяся на корпусе вентилятора 1 в точке O за криволинейной жалюзийной решеткой 7 и образующая всасывающий канал 9.

Диаметральный вентилятор работает следующим образом.

При вращении рабочего колеса воздушный поток всасывается через входное отверстие 2 и нагнетается внутрь рабочего колеса, откуда вторично проходит через рабочее колесо и нагнетается в выходное отверстие 3. Корпус 1 формирует и направляет воздушный поток, сходящий с рабочего колеса 5, а стенка 4 разделяет входящий и выходящий воздушные потоки. При этом образуется большой вихрь, центр вращения которого стабилизируется прямолинейной жалюзийной стенкой 4 и располагается в области радиального зазора между рабочим колесом 5 и прямолинейной жалюзийной стенкой 4. Стабилизация центра вращения большого вихря способствует снижению шума и расширению диапазона устойчивой работы диаметрального вентилятора. Кроме этого, в результате разряжения, создаваемого вращающимся рабочим колесом 5, малый вихрь, центр вращения которого располагается в области радиального зазора между рабочим колесом 5 и входной кромкой корпуса 1, смещается по ходу рабочего колеса 5 в сторону всасывающего канала 9, образуя воздушный дополнительный поток, проходящий через криволинейную жалюзийную решетку 7 и сливающийся в корпусе 1 с основным воздушным потоком. В результате этого увеличивается давление в области номинальных и максимальных подач, увеличивается расход воздуха вентилятором, а также уменьшается шум.

Теоретически работу предлагаемого вентилятора можно описать следующим образом.

Согласно фиг.1 общий Q расход вентилятора будет составлять:
Q = Q1 + Q2 (1)
где Q1 – расход воздуха через входное отверстие вентилятора; Q2 – расход воздуха через всасывающий канал вентилятора.

Дополнительное количество воздуха, поступающего по всасывающему каналу, зависит от площади криволинейной жалюзийной решетки F, коэффициента живого сечения , скорости воздуха и составляет:
Q2 = F (2)
Таким образом, зная среднюю скорость прохождения воздуха и площадь криволинейной жалюзийной решетки, можно определить количество воздуха поступившего из всасывающего канала в воздушный основной поток.

Исследование схемы предлагаемого изобретения проводилось на модели диаметрального вентилятора согласно ГОСТа 10921-90 [4]. Замеры осуществляли с помощью трубки Пито-Прандтля и микроманометра ММН-240. Исследование статического давления во всасывающем канале проводили с помощью датчиков статического давления. Дросселирование нагнетательного патрубка проводилось с помощью сменных перфорированных диафрагм (заслонок).

Вначале была исследована исходная схема диаметрального вентилятора, схема которой соответствовала а.с. 1314144 [3].

Установка имела наружный диаметр колеса D2 = 0,3 м; число лопаток рабочего колеса 16; их толщина t = 0,001 м; длина хорды lх = 0,059 м; угол установки = 164o; ширина проточной части составляла 0,1 м. Исследования проводились при частоте вращения колеса n = 1060 мин-1.

При свободном заборе воздуха модель вентилятора обеспечивала: максимальный расход воздуха Qmax = 1300 м3/ч. При этом полное номинальное давление PVH = 240 Па (при расходе QH = 1070 м3/ч и max = 0,37).

Затем схема вентилятора была переоборудована в соответствии с фиг.1.

Параметры криволинейной жалюзийной плоскости составляли: шаг пластин b = 0,025 м, раскрытие пластин tп = 0,012 м, число жалюзи – 4.

В результате однофакторных экспериментов была выявлена оптимальная глубина начального сечения всасывающего канала, соответствующая 0,17D2.

Из анализа представленных на фиг.2 графиков полного (Pv) давления, КПД () исходной схемы и предлагаемого изобретения можно определить, что аэродинамические показатели предлагаемого изобретения в диапазоне расходов от 600 м3/ч до максимального выше в среднем от исходной схемы вентилятора – Qmax = 6,63%, P = 8,33%, max = 2,4%. Некоторое снижение полного давления в области малых расходов (меньше 600 м3/ч) предлагаемой разработки объясняется тем, что во всасывающем канале наблюдается обратное движение воздуха (нагнетание). Уровень (L) шума в области номинальных производительностей у предлагаемой разработки меньше. Из анализа графика статического давления (Psv) во всасывающем канале предлагаемой разработки можно определить, что при расходах от 500 м3/ч до максимальных наблюдается отрицательное статическое давление (всасывание). Это увеличивает развиваемые давления в нагнетательном канале вследствие слияния воздушного дополнительного потока из всасывающего канала с основным воздушным потоком в корпусе вентилятора. При расходах меньше 500 м3/ч наблюдается положительное статическое давление – движение части воздушного потока из корпуса вентилятора через криволинейную жалюзийную решетку по всасывающему каналу в обратную сторону вращения рабочего колеса вентилятора. Это вызывает потери некоторой части давления в нагнетательном канале при расходе меньше 600 м3/ч. Однако из практики использования вентиляторов в машиностроении известно, что основная (предпочтительная) рабочая зона вентилятора лежит в пределе 0,9 max Поэтому основная рабочая зона вентилятора будет находиться при расходах больше 600 м3/ч. При работе же вентилятора в области расходов меньше 600 м3/ч развиваемые давления можно повысить до давлений исходной схемы поворотом сплошной криволинейной плоскости вокруг точки O в сторону криволинейной жалюзийной решетки вплоть до их соприкосновения (крайняя точка A на фиг.1).

Преимуществом предлагаемого изобретения по сравнению с прототипом являются большие значения развиваемых давлений в области номинальных и максимальных производительностей, а также меньший уровень шума.

Литература

4. ГОСТ 10921-90. Вентиляторы радиальные и осевые. Методы аэродинамических испытаний. – М.: Издательство стандартов, 1991.

Формула изобретения


Диаметральный вентилятор, содержащий корпус с входным и выходным отверстиями и разделяющей их плоской стенкой, снабженной жалюзийной решеткой, и установленное в корпусе рабочее колесо, отличающийся тем, что участок корпуса вентилятора за входной кромкой выполнен жалюзийным длиной 0,4 наружного диаметра колеса D2, а выше входной кромки корпуса на расстоянии 0,17 D2 установлена сплошная криволинейная плоскость, оканчивающаяся и шарнирно закрепленная на корпусе вентилятора за жалюзийным участком, образующая всасывающий канал с начальным сечением на входной кромке корпуса вентилятора.

РИСУНКИ

Рисунок 1, Рисунок 2


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 30.03.2001

Номер и год публикации бюллетеня: 1-2003

Извещение опубликовано: 10.01.2003


Categories: BD_2156000-2156999