Патент на изобретение №2283276

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2283276 (13) C2
(51) МПК

C01B33/32 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.12.2010 – прекратил действие

(21), (22) Заявка: 2004128973/15, 05.10.2004

(24) Дата начала отсчета срока действия патента:

05.10.2004

(46) Опубликовано: 10.09.2006

(56) Список документов, цитированных в отчете о
поиске:
МАТВЕЕВ М.А. Растворимость стеклообразных силикатов натрия. – М.: ПРОМСТРОЙИЗДАТ, 1957, с.66-74. US 4466831 А, 21.08.1984. RU 2154024 C1, 10.08.2000. JP 9328309 A, 22.12.1997. JP 2141416 А, 30.05.1990.

Адрес для переписки:

353922, Краснодарский край, г. Новороссийск, ул. Героев Десантников, 28, кв.18, А.Г. Рябченко

(72) Автор(ы):

Рябченко Александр Гаврилович (RU),
Морозов Геннадий Михайлович (RU),
Дежов Николай Алексеевич (RU)

(73) Патентообладатель(и):

ООО “ИННОВЕЙШЕНС КОМПАНИ” (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА ИЗ СИЛИКАТА НАТРИЯ

(57) Реферат:

Изобретение относится к области производства из силиката натрия его водного раствора. Способ получения жидкого стекла из силиката натрия включает взаимодействие принудительно циркулируемого в замкнутом контуре водосодержащего потока с потоком расплава силиката натрия с силикатным модулем 2,3-3,7, обогащение циркулируемого водосодержащего потока силикатом натрия до заданной концентрации и образование потока силикатосодержащего полупродукта. Водосодержащему потоку придают скорость от 80 до 170 м/с. Он вступает во взаимодействие с потоком расплава силиката натрия. Направление движения водосодержащего потока совпадает по направлению с движением потока расплава силиката натрия, но под углом к нему от 20° до 40°. Отношение массового расхода водосодержащего потока к массовому расходу потока расплава силиката натрия составляет от 5 до 15, образующиеся твердые стеклообразные частично гидратированные зерна силиката натрия имеют средний диаметр не более 70 мкм и выходят из зоны контакта водосодержащего потока с потоком расплава силиката натрия со скоростью не менее 80 м/с. Температуру циркулируемого в замкнутом контуре силикатосодержащего полупродукта обеспечивают от 90°С до 105°С. Техническим результатом является стабильность и улучшение свойств жидкого стекла и сокращение времени технологического процесса.

Изобретение относится к области производственных технологий получения жидкого стекла, а именно к способам производства из силиката натрия его водного раствора (натриевого жидкого стекла), который имеет широкое применение в качестве вяжущего, добавки или реагента в самых различных областях: от металлургии и строительства до бытовой химии.

Под растворимыми стеклами понимают твердые водорастворимые стекловидные силикаты натрия и калия, характеризующиеся определенным содержанием и соотношением оксидов М2О и SiO2, где М – это Na и К, а молярное отношение SiO2/M2O составляет 2,6-3,5 при содержании SiO2 69-76 мас.% для натриевого стекла и 65-69 мас.% – для калиевого стекла.

Основным способом промышленного производства жидкого стекла является автоклавное растворение в воде щелочно-силикатных твердых стекол (растворимого стекла – силикат-глыбы) состава Na2O·SiO2, К2О·nSiO2 и К2O·Na2O·SiO2 (дуплекс-процесс). Однако развитие технологий способствует разработке новых технических решений в данной области.

Известен способ получения жидкого стекла (патент РФ № 2049060, 1995), по которому его получают путем взаимодействия кварцевого песка, предварительно измельченного до дисперсности с удельной поверхностью 7000-49000 см2/г, с гидроксидом щелочного металла, взятого с концентрацией 12-47 мас.% при 115-250°С и давлении 0.25-8 МПа. Полученное жидкое стекло имеет плотность 1,2-1,55 г/см3 и силикатный модуль – молярное отношение SiO2/Na2O 1-4,2.

Недостатком данного способа являются высокое рабочее давление, требующее качественно иного подхода к проектированию и изготовлению автоклава-реактора, усложненный из-за необходимости предварительного измельчения кремнеземсодержащего компонента технологический процесс.

Известен способ получения жидкого стекла (патент РФ №2132817, 1999), включающий взаимодействие кремнеземсодержащего компонента с раствором гидроксида натрия при повышенных температуре и давлении в автоклаве с принудительным перемешиванием, отличающийся тем, что используют кремнеземсодержащий материал с дисперсностью 1000-7000 см2/г, раствор гидроксида натрия с концентрацией 34-36% (мас.) при молярном соотношении SiO2:Na2О 2-3,5, процесс ведут в течение 30-60 мин при 170-190°С, давлении в автоклаве соответственно 0,8-1,2 МПа, полученный продукт остаточным давлением вытесняют из автоклава и интенсивно перемешивают с водой, взятой при температуре 40-90°С.

Недостатком данного двустадийного способа является трудоемкий и энергоемкий технологический процесс.

Известен способ получения жидкого стекла и реактор для получения жидкого стекла (патент РФ №2133715, 1999). Получение жидкого стекла проводят растворением силикат-глыбы в воде при нагревании и импульсном облучении реакционной массы микроволновым полем с плотностью энергии 0,6-4,5 кВт/см2. Процесс проводят в реакторе для получения жидкого стекла.

Известен способ получения жидкого стекла и реактор для получения жидкого стекла (патент РФ №2154024, 2000). Сущность изобретения заключается в способе получения жидкого стекла, который включает приготовление суспензии, подачу суспензии со скоростью 3-5 м/с на подогрев, ее подогрев, синтез жидкого стекла, охлаждение и слив жидкого стекла, при этом суспензию до подачи на синтез подогревают рекуперационным теплом сливаемого жидкого стекла.

Наиболее близким к изобретению по технической сущности является способ получения натриевого жидкого стекла из силиката натрия, имеющего силикатный модуль – молярное отношение SiO2:Na2

Этот способ получения жидкого стекла из силиката натрия наиболее близок к заявляемому по совокупности существенных признаков и принят в качестве прототипа.

Недостатком способа-прототипа, ухудшающим его технологические характеристики, является используемый режим взаимодействия водосодержащего потока с потоком расплава силиката натрия, при котором образуются сравнительно крупные твердые стеклообразные, частично гидратированные зерна силиката натрия, покрытые образующимися при их гидратации пленками из коллоидного кремнезема, тормозящими растворение зерен, и в связи с этим необходимость выполнения дополнительной операции отделения этих зерен силиката натрия от жидкой фазы для последующего их растворения в определенном режиме с получением целевого продукта – натриевого жидкого стекла.

Задача изобретения – улучшение технологических характеристик способа получения жидкого стекла из силиката натрия.

Поставленная задача решается тем, что способ получения жидкого стекла из силиката натрия включает взаимодействие принудительно циркулируемого в замкнутом контуре водосодержащего потока с потоком расплава силиката натрия, имеющего силикатный модуль – молярное отношение SiO2:Na2О=2,3-3,7, обогащение циркулируемого водосодержащего потока силикатом натрия до заданной концентрации и образования потока силикатосодержащего полупродукта, состоящего из силикатосодержащей жидкой фазы и твердой фазы, представляющей собой твердые стеклообразные частично гидратированные зерна силиката натрия, при этом принудительно циркулируемому в замкнутом контуре водосодержащему потоку придают скорость от 80 до 170 м/с, с которой он вступает во взаимодействие с потоком расплава силиката натрия, а также направление движения, совпадающее по направлению с движением потока расплава силиката натрия, но под углом к нему от 20° до 40°, отношение массового расхода водосодержащего потока к массовому расходу потока расплава силиката натрия составляет от 5 до 15, образующиеся твердые стеклообразные частично гидратированные зерна силиката натрия имеют средний диаметр не более 70 мкм и выходят из зоны контакта водосодержащего потока с потоком расплава силиката натрия со скоростью не менее 80 м/с, а температуру циркулируемого в замкнутом контуре силикатосодержащего полупродукта обеспечивают от 90°С до 105°С.

Технический результат, получаемый в результате использования заявляемого способа получения жидкого стекла из силиката натрия, состоит в том, что предусматривают такой режим взаимодействия водосодержащего потока с потоком расплава силиката натрия, который предопределяет образование сравнительно более мелких твердых стеклообразных частично гидратированных зерен силиката натрия, движущихся с высокой скоростью и обладающих свойствами, обеспечивающими их быстрое и полное растворение в циркулируемом потоке силикатосодержащего полупродукта с превращением этим его в целевой продукт – натриевое жидкое стекло. В связи с этим отпадает необходимость выполнения операции отделения зерен силиката натрия от жидкой фазы для их последующего растворения и сокращается время технологического процесса. Силикатный модуль смеси (или молярное соотношение SiO2:Na2О=2,3-3,7) является оптимальным, так как в растворе конечного продукта с модулем менее 2,3 находится слишком большое количество свободной щелочи, ухудшающей потребительские качества жидкого стекла, при использовании молярного соотношения более 3,7 резко возрастает количество непрореагировавших частиц, а также коллоидного кремнезема, скачкообразно увеличивая тем самым плотность и вязкость выходящего из автоклава продукта. Таким образом, режим осуществления заявляемого способа выбран оптимальным. Составляющие новых технических приемов в совокупности позволяют получать жидкое стекло с заданными конечными свойствами – концентрацией и плотностью, что практически неосуществимо при получении жидкого стекла известными способами. При выходе за границы режима не достигается технический результат, а именно стабильность и улучшение свойств получаемого конечного продукта, увеличение скорости растворения гидратированных зерен силиката натрия, сокращение времени технологического процесса.

В способе получения натриевого жидкого стекла из силиката натрия, имеющего силикатный модуль – молярное отношение SiO2:Na2O=2,3-3,7, предусматривают непосредственное взаимодействие водосодержащего потока принудительно циркулируемого в замкнутом контуре, с потоком расплава силиката натрия и этим обеспечивают постепенное обогащение циркулируемого потока силикатом натрия до заданной концентрации. Образуют в результате упомянутого выше взаимодействия циркулируемый в замкнутом контуре поток силикатосодержащего полупродукта, состоящего из силикатосодержащей жидкой фазы и твердой фазы, представляющей собой твердые стеклообразные частично гидратированные зерна силиката натрия, при этом водосодержащему потоку придают скорость, с которой он вступает в контакт с потоком расплава силиката натрия от 80 до 170 м/с, а также направление движения, совпадающее по направлению с движением потока расплава силиката натрия, но под углом к нему от 20° до 40°. Отношение массового расхода водосодержащего потока, вводимого в контакт с потоком расплава силиката натрия, к массовому расходу потока расплава силиката натрия обеспечивают от 5 до 15. Образующиеся твердые стеклообразные частично гидратированные зерна силиката натрия, имеющие средний диаметр не более 70 мкм, выходят из зоны контакта водосодержащего потока с потоком расплава силиката натрия со скоростью не менее 80 м/с, исключающей возможность тормозящего воздействия на растворение зерен пленок из коллоидного кремнезема, образующихся при гидратации зерен. Обеспечивают температуру циркулируемого в замкнутом контуре силикатосодержащего полупродукта от 90 до 105°С, тем самым полностью растворяют зерна силиката натрия за период времени от момента их образования по большей мере 9 минут и этим превращают циркулируемый в замкнутом контуре силикатосодержащий полупродукт в целевой продукт – натриевое жидкое стекло заданной концентрации, которую, при необходимости, корректируют дополнительным вводом воды с учетом испарившейся.

Пример 1

Необходимо приготовить 1000 кг жидкого стекла, имеющего силикатный модуль 2,3, концентрацию силиката натрия 35 мас.%, плотность 1,39 кг/л. Исходные вещества: вода, расплав силиката натрия.

Характеристика исходной воды: масса 744 кг (заливают в емкость замкнутого циркуляционного контура); температура 20°С.

Характеристика исходного расплава силиката натрия: масса 350 кг; температура 950°С; силикатный модуль 2,3.

Характеристика режима приготовления жидкого стекла:

– массовый расход принудительно циркулируемого потока воды (водосодержащего потока) 29,5 кг/мин;

– скорость циркулируемого потока воды (водосодержащего потока) в зоне контакта с потоком расплава 80 м/с;

– массовый расход потока расплава силиката натрия 5,9 кг/мин;

– отношение массовых расходов: 29,5:5,9=5;

– угол между направлением движения потока расплава и попутным ему направлением движения водосодержащего потока 20°;

– средний диаметр зерен силиката натрия 50 мкм;

– скорость зерен силиката натрия при их выходе их зоны контакта потоков 80 м/с;

– время принудительной циркуляции силикатосодержащего полупродукта после завершения ввода расплава силиката натрия 5,7 мин;

– температура силикатосодержащего полупродукта, циркулируемого в замкнутом контуре, 90°С;

– масса испарившейся воды 94 кг;

– общее время приготовления 1000 кг жидкого стекла 65 мин.

Пример 2

Необходимо приготовить 1000 кг жидкого стекла, имеющего силикатный модуль 3,7, концентрацию силиката натрия 35 масс.%, плотность 1,29 кг/л. Исходные вещества: вода, расплав силиката натрия.

Характеристика исходной воды: масса 747 кг (заливают в емкость замкнутого циркуляционного контура); температура 20°С.

Характеристика исходного расплава силиката натрия: масса 350 кг; температура 1000°С; силикатный модуль 3,7.

Характеристика режима приготовления жидкого стекла:

– массовый расход принудительно циркулируемого потока воды (водосодержащего потока) 88,5 кг/мин;

– скорость циркулируемого потока воды (водосодержащего потока) в зоне контакта с потоком расплава 170 м/с;

– массовый расход потока расплава силиката натрия 5,9 кг/мин;

– отношение массовых расходов: 88,5:5,9=15;

– угол между направлением движения потока расплава и попутным ему направлением движения водосодержащего потока 40°;

– средний диаметр зерен силиката натрия 27 мкм;

– скорость зерен силиката натрия при их выходе их зоны контакта потоков 120 м/с;

– время принудительной циркуляции силикатосодержащего полупродукта после завершения ввода расплава силиката натрия 8,7 мин;

– температура силикатосодержащего полупродукта, циркулируемого в замкнутом контуре, 105°С;

– масса испарившейся воды 97 кг;

– общее время приготовления 1000 кг жидкого стекла 68 мин.

Заявляемый способ получения жидкого стекла из силикатов натрия дает возможность получить конечный продукт, обладающий заданными и стабильными свойствами (концентрация, плотность), повышает скорость растворения гидратированных зерен силиката натрия и сокращает время технологического процесса. Его использование в опытном производстве подтвердило работоспособность, эффективность и высокое качество получаемого жидкого стекла.

Формула изобретения

Способ получения жидкого стекла из силиката натрия, включающий взаимодействие принудительно циркулируемого в замкнутом контуре водосодержащего потока с потоком расплава силиката натрия, имеющего силикатный модуль – молярное отношение SiO2:Na2O=2,3-3,7, обогащение циркулируемого водосодержащего потока силикатом натрия до заданной концентрации и образования потока силикатосодержащего полупродукта, состоящего из силикатосодержащей жидкой фазы и твердой фазы, представляющей собой твердые стеклообразные частично гидратированные зерна силиката натрия, отличающийся тем, что принудительно циркулируемому в замкнутом контуре водосодержащему потоку придают скорость от 80 до 170 м/с, с которой он вступает во взаимодействие с потоком расплава силиката натрия, а также направление движения, совпадающее по направлению с движением потока расплава силиката натрия, но под углом к нему от 20 до 40°, отношение массового расхода водосодержащего потока к массовому расходу потока расплава силиката натрия составляет от 5 до 15, образующиеся твердые стеклообразные частично гидратированные зерна силиката натрия имеют средний диаметр не более 70 мкм и выходят из зоны контакта водосодержащего потока с потоком расплава силиката натрия со скоростью не менее 80 м/с, а температуру циркулируемого в замкнутом контуре силикатосодержащего полупродукта обеспечивают от 90 до 105°С.


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 06.10.2007

Извещение опубликовано: 20.05.2009 БИ: 14/2009


Categories: BD_2283000-2283999