Патент на изобретение №2281483
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ОПРЕДЕЛЕНИЯ ПАРОВ МАСЛЯНОЙ КИСЛОТЫ В ПРИСУТСТВИИ ПАЛЬМИТИНОВОЙ И СТЕАРИНОВОЙ КИСЛОТ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ
(57) Реферат:
Изобретение относится к аналитической химии органических соединений и может быть применено для определения паров масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе рабочей зоны предприятий химической и других отраслей промышленности. В способе определения паров масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе рабочей зоны, включающем отбор пробы, подготовку детектирующего устройства к работе, ввод пробы в ячейку детектирования и регистрацию аналитического сигнала, расчет концентрации масляной кислоты по градуировочному графику, отобранную пробу вводят в ячейку детектирования с пьезокварцевым резонатором, электроды которого предварительно модифицированы нанесением на них раствора сорбента полиэтиленгликоля-2000 в ацетоне так, чтобы масса пленки после удаления растворителя в сушильном шкафу в течение 30 мин при 40°С составила 17-25 мкг, регистрацию аналитического сигнала осуществляют после ввода в ячейку детектирования пробы в виде отклика модифицированных электродов пьезокварцевого резонатора, рассчитанного по разности частот его колебаний до ввода пробы и после установления равновесия в сорбционной системе с введенной пробой, концентрацию масляной кислоты рассчитывают на основании градуировочного графика зависимости указанного отклика от ее концентрации по уравнению
(56) (продолжение): CLASS=”b560m”ПОЛЮДЕК-ФАБИНИ Р., БЕЙРИХ Т. Органический анализ, Л, Химия, 1981, с.136, 142-152.
Изобретение относится к аналитической химии органических соединений и может быть применено для определения паров масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе рабочей зоны предприятий химической и других отраслей промышленности. Наиболее близким по технической сущности и достигаемому эффекту является фотометрический способ определения паров масляной кислоты в воздухе рабочей зоны, заключающийся в получении метилового эфира кислоты с последующим определением по реакции с гидрохлоридом гидроксиламина и перхлоратом железа, Недостатками способа являются необходимость подготовки пробы, приготовления растворов гидрохлорида гидроксиламина и перхлората железа для каждого единичного определения, сложность и длительность определения паров масляной кислоты. Технической задачей изобретения является разработка способа определения паров масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе рабочей зоны без стадии подготовки пробы, сокращение продолжительности анализа. Поставленная техническая задача достигается тем, что в способе определения паров масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе рабочей зоны, включающем отбор пробы, подготовку детектирующего устройства к работе, ввод пробы в ячейку детектирования и регистрацию аналитического сигнала, расчет концентрации масляной кислоты по градуировочному графику, отобранную пробу вводят в ячейку детектирования с пьезокварцевым резонатором, электроды которого предварительно модифицированы нанесением на них раствора сорбента полиэтиленгликоля-2000 (ПЭГ-2000) в ацетоне так, чтобы масса пленки после удаления растворителя в сушильном шкафу в течение 30 мин при 40°С составила 17-25 мкг, регистрацию аналитического сигнала осуществляют после ввода в ячейку детектирования пробы в виде отклика модифицированных электродов пьезокварцевого резонатора, рассчитанного по разности частот его колебаний до ввода пробы и после установления равновесия в сорбционной системе с введенной пробой, концентрацию масляной кислоты рассчитывают на основании градуировочного графика зависимости указанного отклика от ее концентрации по уравнению
где с – концентрация масляной кислоты, мг/м3. Технический результат по предлагаемому способу достигается за счет модификации электродов пьезокварцевого резонатора пленкой ПЭГ-2000, нанесенной из раствора в ацетоне и проявляющей сорбционное сродство к масляной кислоте. Нанесение пленки с массой сорбента 17-25 мкг на тензочувствительную область пьезорезонатора способствует повышению чувствительности и снижению погрешности определения. Способ осуществляется по следующей методике. 1) Пробоотбор. В стеклянный бюкс с полупроницаемой крышкой помещают 2 см3 масляной кислоты, шприцем вместимостью 10 см3 отбирают равновесную газовую фазу, разбавляют воздухом до требуемой концентрации, выдерживают при комнатной температуре 5 мин, затем через герметичный затвор вводят в ячейку детектирования, содержащую пьезокварцевый резонатор, модифицированный раствором ПЭГ-2000 в ацетоне. 2) Подготовка детектирующего устройства. На алюминиевые электроды пьезокварцевого резонатора АТ-среза с собственной частотой колебаний 8-10 МГц микрошприцем наносят раствор сорбента ПЭГ-2000 в ацетоне так, чтобы после удаления растворителя в сушильном шкафу в течение 30 мин при 40°С масса пленки модификатора составляла 17-25 мкг. 3) Определение паров масляной кислоты. Модифицированный пьезокварцевый резонатор помещают в ячейку детектирования, перед измерениями 5 мин адаптируют к среде ячейки. Пьезорезонатор стабилизирован, если сдвиг частоты колебаний в течение 5 мин находится в пределах 10-15 Гц. Затем в ячейку шприцем вводят 5 см3 воздуха, содержащего пары масляной кислоты при концентрации на уровне 5-20 мг/м3. Считывание сигналов проводят каждые 5 с до установления равновесия в сорбционной системе. По разности Fпл-Fc (Fпл – частота колебаний пьезорезонатора, модифицированного пленкой ПЭГ-2000, Fc – частота колебаний пьезорезонатора при сорбции паров масляной кислоты) рассчитывают отклик сенсора
После измерения регенерируют ячейку детектирования и пленочное покрытие продувкой системы лабораторным воздухом. Продолжительность анализа с пробоотбором по полной схеме, включающей модификацию электродов пьезокварцевого резонатора и последующую регенерацию ячейки детектирования, 30 мин. Число анализов без замены покрытий пьезокварцевого резонатора 200. Время, необходимое для восстановления сорбента, 10 мин. Погрешность определения паров масляной кислоты в воздухе ±15%. Определение пальмитиновой и стеариновой кислот в анализируемом воздухе с применением пьезокварцевого резонатора, электроды которого модифицированы раствором ПЭГ-2000 в ацетоне, проводили по методике, аналогичной описанной выше. Способ иллюстрируется следующими примерами. Пример 1 В стеклянный бюкс с полупроницаемой крышкой помещали 2 см3 масляной кислоты, шприцем вместимостью 10 см3 отбирали равновесную газовую фазу, разбавляли воздухом до требуемой концентрации, выдерживали при комнатной температуре 5 мин, затем через герметичный затвор вводили в ячейку детектирования, содержащую пьезокварцевый резонатор, модифицированный раствором ПЭГ-2000 в ацетоне. На электроды пьезокварцевого резонатора микрошприцем наносили раствор ПЭГ-2000 в ацетоне так, чтобы масса пленки после удаления растворителя в сушильном шкафу при 40°С в течение 30 мин составляла 17 мкг. Затем пьезорезонатор помещали в статическую ячейку детектирования с инжекторным вводом пробы, выдерживали 5 мин для установления нулевого сигнала, вводили шприцем анализируемую пробу объемом 5 см3 и фиксировали сигнал пьезорезонатора через 15 с после ввода пробы. По разности Fпл-Fc рассчитывали отклик сенсора Продолжительность анализа с пробоотбором по полной схеме с модификацией электродов и последующей регенерацией ячейки детектирования составляет 30 мин. Число анализов без замены покрытий пьезокварцевого резонатора 200. Время, необходимое для восстановления сорбента, 10 мин. Погрешность определения паров масляной кислоты в воздухе 15%. Определение пальмитиновой и стеариновой кислот в воздухе с применением пьезокварцевого резонатора, электроды которого модифицированы раствором ПЭГ-2000, проводили аналогично описанной методике. Пленка ПЭГ-2000, нанесенная на электроды пьезокварцевого резонатора из раствора в ацетоне, не проявляет сорбционного сродства к пальмитиновой и стеариновой кислотам, аналитический сигнал находится на уровне шумов, повышается погрешность определения. Поэтому пальмитиновая и стеариновая кислоты не мешают определению паров масляной кислоты в воздухе. Способ неосуществим. Результаты приведены в табл.1. Пример 2 Отбор паров масляной кислоты проводили аналогично примеру 1. На электроды пьезорезонатора микрошприцем наносили раствор ПЭГ-2000 в ацетоне так, чтобы после удаления растворителя в сушильном шкафу в течение 30 мин при 40°С масса пленки модификатора составляла 25 мкг. Далее анализировали, как указано в примере 1. Способ осуществим. Результаты приведены в табл.1. Пример 3 Отбор паров масляной кислоты проводили аналогично примеру 1. На электроды пьезорезонатора микрошприцем наносили раствор ПЭГ-2000 в ацетоне так, чтобы после удаления растворителя в сушильном шкафу в течение 30 мин при 50°С масса пленки модификатора составляла 25 мкг. Далее анализировали, как указано в примере 1. Способ неосуществим, так как происходит разложение модификатора, снижается время “жизни” пьезорезонатора без замены покрытия, наблюдается значительный дрейф нулевого сигнала. Результаты приведены в табл.1. Пример 4 Отбор паров масляной кислоты проводили аналогично примеру 1. На электроды пьезорезонатора микрошприцем наносили раствор ПЭГ-2000 в ацетоне так, чтобы после удаления растворителя в сушильном шкафу в течение 30 мин при 30°С масса пленки модификатора составляла 25 мкг. Далее анализировали, как указано в примере 1. Способ неосуществим, так как температура 30°С не обеспечивает полного удаления растворителя, что приводит к значительному дрейфу нулевого сигнала, увеличению погрешности определения. Пример 5 Отбор паров масляной кислоты проводили аналогично примеру 1. На электроды пьезорезонатора микрошприцем наносили другой модификатор – раствор ТБПЭ (тетрабензопентаэритрита) в ацетоне так, чтобы после удаления растворителя в сушильном шкафу в течение 30 мин при 40°С масса пленки модификатора составляла 17 мкг. Далее анализировали, как указано в примере 1. Способ неосуществим, так как аналитический сигнал пьезорезонатора находится на уровне шумов, наблюдается значительный дрейф нулевого сигнала. Результаты приведены в табл.1. Пример 6 Отбор паров масляной кислоты проводили аналогично примеру 1. На электроды пьезорезонатора микрошприцем наносили другой модификатор – раствор сквалана в хлороформе так, чтобы после удаления растворителя в сушильном шкафу при 40°С в течение 30 мин масса пленки модификатора составляла 17 мкг. Далее анализировали, как указано в примере 1. Способ неосуществим, так как аналитический сигнал пьезорезонатора находится на уровне шумов, наблюдается значительный дрейф нулевого сигнала. Результаты приведены в табл.1. Некоторые характеристики заявляемого способа и прототипа сопоставлены в табл.2. Из примеров 1-6 и табл.1 и 2 следует, что положительный эффект по предлагаемому способу достигается при массе пленки сорбента ПЭГ-2000, равной 17-25 мкг, после удаления растворителя в сушильном шкафу в течение 30 мин при 40°С (примеры 1 и 2). При уменьшении или увеличении массы сорбента снижается чувствительность модифицированного пьезокварцевого резонатора по отношению к парам масляной кислоты в воздухе, возрастает погрешность определения. Удаление растворителя в сушильном шкафу при 50°С приводит к разложению модификатора, снижению времени “жизни” пьезорезонатора без замены покрытия, значительному дрейфу нулевого сигнала (пример 3). При 30°С в сушильном шкафу не происходит полного удаления растворителя, что приводит к значительному дрейфу нулевого сигнала и увеличению погрешности определения (пример 4). Применение других модификаторов (примеры 5 и 6) не позволяет определять пары масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе. Пленка ПЭГ-2000, нанесенная на электроды пьезокварцевого резонатора из раствора в ацетоне, не проявляет сорбционного сродства к пальмитиновой и стеариновой кислотам, аналитический сигнал находится на уровне шумов, повышается погрешность определения. Поэтому пальмитиновая и стеариновая кислоты не мешают определению паров масляной кислоты в воздухе. Таким образом, предлагаемый способ определения паров масляной кислоты в присутствии стеариновой и пальмитиновой кислот в воздухе по сравнению с прототипом позволяет: 1) определить пары масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе рабочей зоны; 2) исключить стадию пробоподготовки; 2) сократить продолжительность анализа со 120 мин до 30 мин.
Формула изобретения
Способ определения паров масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе рабочей зоны, включающий отбор пробы, подготовку детектирующего устройства к работе, ввод пробы в ячейку детектирования и регистрацию аналитического сигнала, расчет концентрации масляной кислоты по градуировочному графику, отличающийся тем, что отобранную пробу вводят в ячейку детектирования с пьезокварцевым резонатором, электроды которого предварительно модифицированы нанесением на них раствора сорбента полиэтиленгликоля-2000 в ацетоне так, чтобы масса пленки после удаления растворителя в сушильном шкафу в течение 30 мин при 40°С составила 17-25 мкг, регистрацию аналитического сигнала осуществляют после ввода в ячейку детектирования пробы в виде отклика модифицированных электродов пьезокварцевого резонатора, рассчитанного по разности частот его колебаний до ввода пробы и после установления равновесия в сорбционной системе с введенной пробой, концентрацию масляной кислоты рассчитывают на основании градуировочного графика зависимости указанного отклика от ее концентрации по уравнению
где с – концентрация масляной кислоты, мг/м3.
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 12.07.2007
Извещение опубликовано: 10.03.2009 БИ: 07/2009
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||