Патент на изобретение №2280613

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2280613 (13) C1
(51) МПК

C01B21/46 (2006.01)
C06B47/04 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.12.2010 – действует

(21), (22) Заявка: 2004134865/15, 29.11.2004

(24) Дата начала отсчета срока действия патента:

29.11.2004

(46) Опубликовано: 27.07.2006

(56) Список документов, цитированных в отчете о
поиске:
RU 2177445 С2, 27.12.2001. SU 1807014 A1, 07.04.1993. SU 1366475 A1, 15.01.1988. SU 1775372 A1, 15.11.1992. RU 2104923 C1, 20.02.1998. RU 2162072 C1, 28.12.1999. GB 2239451 A, 03.07.1991. GB 1458132 А, 08.12.1973.

Адрес для переписки:

606007, Нижегородская обл., г. Дзержинск, ул. Зеленая, 6, ФГУП “ГосНИИ “Кристалл”

(72) Автор(ы):

Смирнов Сергей Петрович (RU),
Ильин Владимир Петрович (RU),
Смирнов Петр Сергеевич (RU),
Валиуллин Камиль Шафикович (RU),
Федотов Петр Иванович (RU),
Бастраков Николай Иванович (RU),
Кузнецов Валерий Павлович (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие “Государственный научно-исследовательский институт “Кристалл” (RU),
Федеральное государственное унитарное предприятие “Завод им. Я.М. Свердлова” (RU)

(54) СПОСОБ ОЧИСТКИ СМЕСЕЙ АЗОТНОЙ КИСЛОТЫ И ОКСИДОВ АЗОТА, ИНГИБИРОВАННЫХ ФТОРИСТЫМ ВОДОРОДОМ

(57) Реферат:

Изобретение относится к области технологии переработки смесей азотной кислоты и оксидов азота, содержащих в качестве ингибитора коррозии фтористый водород, преимущественно окислителей жидких ракетных топлив. Способ очистки смесей азотной кислоты и оксидов азота, ингибированных фтористым водородом, с помощью кремнийсодержащего соединения, заключается в том, что в качестве кремнийсодержащего соединения используют силикат щелочного металла, предпочтительно натриевое жидкое стекло, при этом фтористый водород переводят непосредственно в соответствующий гексафторсиликат металла, нерастворимый в смеси азотной кислоты и оксидов азота, процесс ведут в одну стадию при температуре от 20°С до точки кипения смеси в зависимости от содержания оксидов азота, предпочтительно в интервале температур 40÷45°С, а кремнийсодержащее соединение дозируют в смесь в количестве, близком к стехиометрическому. Способ позволяет повысить производительность процесса и уменьшить коррозионный износ оборудования. 1 табл.

Изобретение относится к области технологии переработки смесей азотной кислоты и оксидов азота, содержащих в качестве ингибитора коррозии фтористый водород, преимущественно окислителей жидких ракетных топлив.

Необходимость переработки данных смесей вызвана большими запасами окислителей, в том числе не соответствующих техническим требованиям для их применения по назначению. Переработка окислителей позволяет получить продукционную азотную кислоту, используемую, например, в производствах органических нитросоединений, взрывчатых материалов, и, кроме того, уменьшить экологическую опасность, которая существует в районах длительного хранения окислителей.

Известен способ переработки смесей азотной кислоты и оксидов азота (патент на изобретение N 2177445 по МПК C 01 В 21/46, C 06 В 47/04), преимущественно окислителей жидких ракетных топлив, ингибированных фтористым водородом, включающий две основные стадии:

– обработку смесей кремнийсодержащим соединением, предпочтительно гранулированным силикагелем (SiO2), с получением газообразного тетрафторида кремния (SiF4);

– очистку отходящих газов от тетрафторида кремния с получением гексафторсиликата натрия (Na2SiF6).

Обработку смесей азотной кислоты и оксидов азота осуществляют в реакторе с мешалкой и рубашкой для нагрева и охлаждения. Этот способ выбран в качестве прототипа.

Согласно вышеуказанному способу в процессе переработки смесей азотной кислоты и оксидов азота фтористый водород связывается силикагелем в легколетучий тетрафторид кремния, отгоняемый из реакционной массы с оксидами азота при температуре 75°С:

Оксиды азота затем конденсируют, а несконденсированные газы, содержащие 90÷92% тетрафторида кремния и 3÷5% оксидов азота, поглощают водным раствором азотной кислоты и нитрата натрия в хемосорбционном скруббере при 25÷35°С с получением нерастворимых гексафторсиликата натрия (Na2SiF6) и кремнегеля:

Образующийся осадок отделяется на вакуум-воронке и поступает на утилизацию, а фильтрат после внесения нового количества нитрата натрия вновь поступает на орошение скруббера.

В процессе промышленной эксплуатации были выявлены следующие недостатки известного способа:

– очистка отходящих газов от тетрафторида кремния требует постоянной работы насоса, подающего на форсунки скруббера поглотительный раствор под давлением 0,3÷0,4 МПа, и периодической регенерации поглотительного раствора. В то же время во избежание забивки форсунок образующийся осадок необходимо отделять от поглотительного раствора, подаваемого на орошение скруббера. Для этого в контуре орошения установлен отстойник большой емкости. Таким образом, стадия очистки отходящих газов представляет собой сложную систему, неисправность которой является причиной периодических остановок всей установки переработки окислителей;

– требуемая степень очистки исходной смеси от фтористого водорода достигается только при большом избытке силикагеля, в 55 раз превышающем стехиометрически необходимое количество по реакции (1). Это является причиной низкой производительности процесса, поскольку силикагель занимает до 40% реакционного объема;

– использование силикагеля в качестве кремнийсодержащего реагента требует создания специального реактора с диффузором-сепаратором, исключающим механическое измельчение гранул, поскольку появление тонкодисперсного силикагеля в продукционной азотной кислоте недопустимо, а его отделение от очищенной смеси представляет сложную проблему в силу малой разности плотностей твердой и жидкой фаз;

– необходимость поддержания высокой температуры (75°С) в реакторах вызывает повышенный коррозионный износ оборудования.

Технической задачей разработки предлагаемого способа является исключение перечисленных недостатков известного способа путем перехода на новый реагент, позволяющий непосредственно связывать фтористый водород не в газообразное, а в кристаллическое соединение.

Технический результат достигается тем, что в качестве кремнийсодержащего реагента используются силикаты щелочных металлов, предпочтительно натриевое жидкое стекло (Na2SiO3), поскольку наличие катиона в реакционной массе позволяет связать фтористый водород в нерастворимую соль (гексафторсиликат натрия):

Таким образом, газовыделения при этом не происходит, и стадии очистки отходящих газов в предлагаемом способе не требуется. С точки зрения кинетики процесса, наиболее целесообразно использование силикатов щелочных металлов в виде водных растворов (так называемого жидкого стекла).

Для связывания фтористого водорода в гексафторсиликат металла достаточно жидкого стекла в количестве, близком к стехиометрическому по реакции (4). Кроме того, переход на жидкое стекло дополнительно позволяет осуществлять дозировку кремнийсодержащего реагента в непрерывном режиме вместе с исходной смесью. При этом уменьшение количества кремнийсодержащего реагента в реакционной массе по сравнению с известным методом позволяет увеличить производительность реактора не менее чем на 20%. По предлагаемому способу в качестве реактора может использоваться емкостное оборудование с мешалкой в обычном исполнении.

Использование в качестве реагента силикатов щелочных металлов позволяет вести технологический процесс в одну основную стадию в широком температурном интервале от 20°С до точки кипения смеси (45÷55°С в зависимости от содержания оксидов азота). Оптимальной температурой ведения процесса является 40÷45°С, что сопровождается низким коррозионным износом оборудования в сочетании с высокой производительностью по отношению к прототипу.

Примеры реализации заявляемого технического решения в сравнении с прототипом приведены в таблице.

Таблица
Кремнийсодержащий реагент T, °C Количество реагента по отношению к стехиометрическому Скорость коррозии стали 12Х18Н10Т, мм/год Производительность по отношению к прототипу, %
жидкая фаза паровая фаза
SiO2 (прототип) 75 55 0,12÷0,15 0,30÷0,50 100
Na2SiO3 20 1,2 0,01÷0,02 0,03÷0,04 122
Na2SiO3 30 1,1 0,02÷0,03 0,04÷0,07 125
Na2SiO3 40 1,0 0,03÷0,05 0,06÷0,09 130
Na2SiO3 45 1,0 0,04÷0,06 0,08÷0,11 130
Na2SiO3 50 1,0 0,07÷0,09 0,11÷0,15 131
Na2SiO3 55 1,0 0,10÷0,12 0,14÷0,17 131
K2SiO3 20 1,3 0,02÷0,03 0,03÷0,04 120
К2SiO3 40 1,1 0,03÷0,05 0,07÷0,09 125
К2SiO3 50 1,0 0,07÷0,09 0,12÷0,14 126

Достигаемая остаточная концентрация фторид-иона в очищенной смеси во всех приведенных случаях составляет <0,001% масс.

Как видно из таблицы, по предлагаемому способу значительно сокращается количество реагента по отношению к стехиометрическому, повышается производительность установки, а оптимальная температура ведения процесса 40÷45°С способствует уменьшению коррозионного износа металла.

Получаемая суспензия гексафторсиликата металла в смеси азотной кислоты с оксидами азота разделяется известным методом с последующей фильтрацией. Очищенная от фтористого водорода и от твердой фазы смесь поступает на дальнейшую переработку известным способом путем разделения смеси в колоннах отбелки, абсорбции оксидов азота и концентрирования абсорбционной азотной кислоты, смешения концентрированной азотной кислоты с кубовой кислотой из колонны отбелки с получением продукционной азотной кислоты, а гексафторсиликат металла поступает на промывку и утилизацию.

Формула изобретения

Способ очистки смесей азотной кислоты и оксидов азота, ингибированных фтористым водородом, с помощью кремнийсодержащего соединения, отличающийся тем, что в качестве кремнийсодержащего соединения используют силикат щелочного металла, предпочтительно натриевое жидкое стекло, при этом фтористый водород переводят непосредственно в соответствующий гексафторсиликат металла, не растворимый в смеси азотной кислоты и оксидов азота, процесс ведут в одну стадию при температуре от 20°С до точки кипения смеси в зависимости от содержания оксидов азота, предпочтительно в интервале температур 40÷45°С, а кремнийсодержащее соединение дозируют в смесь в количестве, близком к стехиометрическому.


PD4A – Изменение наименования обладателя патента СССР или патента Российской Федерации на изобретение

(73) Новое наименование патентообладателя:

Федеральное государственное унитарное предприятие «Государственный научно-исследовательский институт «Кристалл» (RU)

(73) Новое наименование патентообладателя:

Федеральное казенное предприятие «Завод имени Я.М.Свердлова» (RU)

Адрес для переписки:

606007, Нижегородская обл., г. Дзержинск, ул. Зеленая, 6, ФГУП «ГосНИИ «Кристалл»

Извещение опубликовано: 27.07.2007 БИ: 21/2007


Categories: BD_2280000-2280999