Патент на изобретение №2280106
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПОДГОТОВКИ ЭЛЕКТРОЛИТА ДЛЯ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕДИ
(57) Реферат:
Изобретение относится к области гидрометаллургии цветных металлов, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике. Способ приготовления электролита для электролитического рафинирования меди включает введение в электролит комплекса поверхностно-активных веществ, в числе которых используют тиокарбомид. При этом тиокарбомид предварительно растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбомиде, равном 20-600 при температуре 40-70°С в течение 10-70 часов. В качестве сульфатного раствора меди для обработки тиокарбамида используют исходный электролит. Использование изобретения позволяет получить катодную медь, имеющую гладкую поверхность, низкое содержание серы, высокие физико-механические показатели, в частности спиральное удлинение, характеризующее способность меди к прокатываемости. 1 з.п. ф-лы, 1 табл.
Изобретение относится к области гидрометаллургии цветных металлов, в частности к электролитическому рафинированию меди, и может быть использовано в гальванотехнике. Известен способ приготовления электролита для электролитического рафинирования меди, включающий введение в сульфатный электролит комплекса поверхностно-активных веществ (ПАВ), в числе которых вводят тиокарбамид (тиомочевину). Добавки ПАВ растворяют в воде и в виде водных растворов вводят в электролит, поступающий в электролизные ванны. При этом расход тиокарбамида составляет 90 г на тонну меди, получаемой при электролизе. Способ позволяет в процессе электрорафинирования при плотности тока 310-320 А/м2 получать медные катоды марки М0к, характеризующиеся мелкокристаллической структурой, бороздчатой поверхностью и относительно высоким содержанием серы [1]. Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида серосодержащего соединения, используемого в качестве добавки ПАВ, так как при добавке водного раствора тиокарбамида в электролит непосредственно перед электролизом его сера переходит в катодную медь. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения. Спиральное удлинение является основным показателем, используемым в мировой практике, наряду с химическим составом для оценки пригодности катодной меди при производстве катанки методом непрерывного литья и проката, то есть характеризующим прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, гарантированно получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Следующим недостатком известного способа являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования меди, обусловленные значительным расходом тиокарбамида, используемым в качестве добавки ПАВ. Известен способ приготовления электролита для электролитического осаждения меди, включающий введение в сульфатный электролит комплекса ПАВ, в числе которых вводят тиокарбамид (тиомочевину). Каждую добавку ПАВ растворяют в воде и в виде водных растворов вводят в электролит, поступающий в электролизные ванны. При этом расход тиокарбамида составляет 70 г на тонну меди, получаемой при электролизе. Способ позволяет в процессе электролитического рафинирования получать медные катоды марок М00к и М0к, характеризующиеся мелкокристаллической структурой [2]. Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида серосодержащего соединения, используемого в качестве добавки ПАВ, так как при добавке в электролит водного раствора тиокарбамида непосредственно перед электролизом его сера переходит в катодную медь. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения. Спиральное удлинение является основным показателем, используемым в мировой практике, наряду с химическим составом для оценки пригодности катодной меди при производстве катанки методом непрерывного литья и проката, то есть характеризующим прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Следующим недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования меди, обусловленные значительным расходом тиокарбамида, применяемым в качестве добавки ПАВ. Известен способ приготовления сульфатного электролита для электролитического рафинирования меди, включающий введение в электролит комплекса ПАВ, в числе которых вводят тиокарбамид, (тиомочевину). Добавки ПАВ, в том числе тиокарбамид, растворяют в воде при комнатной температуре и вводят в электролит, поступающий в электролизные ванны. При этом расход каждой добавки ПАВ составляет 50-150 г на тонну меди, получаемой при электролизе [3]. Способ позволяет в процессе электролитического рафинирования получать медные катоды, характеризующиеся мелкокристаллической структурой. Недостатком известного способа является повышенное содержание серы в катодной меди, обусловленное значительным расходом тиокарбамида (серосодержащего соединения), вводимого в качестве добавки ПАВ. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения, характеризующий прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, гарантированно получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Еще одним недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования, обусловленные значительным расходом тиокарбамида, вводимого в сульфатный электролит в качестве добавки ПАВ. Наиболее близким к заявляемому способу по совокупности существенных признаков является способ электролитического рафинирования меди из сернокислых электролитов, включающий введение в электролит 2-5 мг/л продукта конденсации тиомочевины и аминоамидов жирных кислот. Добавки ПАВ, в том числе продукт конденсации тиомочевины и аминоамидов жирных кислот, растворяют в воде при 60-70°С и вводят в электролит, поступающий в электролизные ванны. При этом концентрация продукта конденсации тиомочевины и аминоамидов жирных кислот составляет 2-5 г/л [4]. Способ позволяет в процессе электролитического рафинирования получать плотные без дендритов медные катоды. Недостатком известного способа-прототипа является повышенное (0,001%) содержание серы в катодной меди. В свою очередь, сера, содержащаяся в катодной меди, оказывает негативное влияние на физико-механические свойства меди, в частности ухудшает показатель спирального удлинения, характеризующий прокатываемость катодной меди. Другим недостатком способа является недостаточно высокая марка катодной меди М0к, получаемая в результате процесса электрорафинирования при использовании приготовленного электролита. Еще одним недостатком являются повышенные затраты электроэнергии на производство катодной меди в процессе электрорафинирования. Задача изобретения заключается в повышении качества катодной меди и снижении удельного расхода электроэнергии на ее производство. Технический результат от использования изобретения заключается в получении катодной меди, имеющей гладкую без дендритов поверхность, низкое содержание серы, высокие физико-механические показатели, в частности спиральное удлинение, характеризующее способность меди к прокатываемости. Сущность предлагаемого изобретения заключается в том, что в сульфатный электролит для электролитического рафинирования меди вводят комплекс добавок ПАВ, в числе которых вводят тиокарбамид. При этом тиокарбамид предварительно растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600, при температуре 40-70°С и выдерживают при температуре 40-70°С в течение 10-70 часов. Другое отличие способа состоит в том, что в качестве сульфатного раствора меди для обработки тиокарбамида используют исходный электролит. Экспериментально установлено, что способ по п.1 или п.2 приготовления электролита для электролитического рафинирования меди позволяет за счет предварительного растворения тиокарбамида в сульфатном растворе меди и выдержки раствора при температуре 40-70°С в течение 10-70 часов получать катодную медь, характеризующуюся гладкой поверхностью, мелкокристаллической структурой и низким содержанием серы. Кроме того, предлагаемый способ подготовки электролита позволяет снизить расход электроэнергии на производство 1 тонны электролитной меди. В способах приготовления электролита для электролитического рафинирования меди, включающих введение в электролит комплекса добавок ПАВ, в числе которых вводят тиокарбамид, указанных аналогах и прототипе отсутствует предварительное растворение тиокарбамида в сульфатном растворе меди и выдержка этого раствора при температуре 40-70°С в течение 10-70 часов. В случае отсутствия предварительного растворения тиокарбамида в сульфатном растворе меди и выдержки этого раствора при температуре 40-70°С в течение 10-70 часов для получения в результате электрорафинирования катодной меди, характеризующейся гладкой поверхностью и мелкокристаллической структурой, необходимо увеличить расход тиокарбамида (описание аналогов) или вводить другое ПАВ (прототип). В свою очередь, увеличение расхода тиокарбамида приводит к повышению содержания серы в катодной меди, снижению ее физико-механических свойств и увеличению удельного расхода электроэнергии на ее производство. Увеличение в предлагаемом способе количества ионов меди в сульфатном медном растворе более чем необходимо для обеспечения верхнего предела предлагаемого диапазона отношений ионов меди и серы, содержащейся в тиокарбамиде, равного 20-600, создаст трудности исполнения, связанные со значительным увеличением промежуточного оборудования для растворения и выдержки при приготовлении добавки тиокарбамида, и потребует неоправданного дополнительного расхода энергоресурсов для поддержания необходимой температуры раствора. Уменьшение в предлагаемом способе количества ионов меди в сульфатном медном растворе менее чем необходимо для обеспечения нижнего предела предлагаемого диапазона отношений ионов меди и серы, содержащейся в тиокарбамиде, равного 20-600, приведет к образованию ограниченно растворимых соединений, затрудняющих исполнение способа и способных негативно повлиять на процесс электролитического рафинирования меди. Уменьшение ниже 40°С температуры раствора, поддерживаемой при предварительном растворении и выдержке раствора тиокарбамида, не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой при снижении расхода тиокарбамида, используемого в числе комплекса добавок ПАВ. Увеличение выше 70°С температуры раствора, поддерживаемой при предварительном растворении и выдержке раствора тиокарбамида, приводит к его разложению, что отрицательно влияет на поверхностно-активные свойства и не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой, при снижении расхода тиокарбамида, используемого в числе комплекса добавок ПАВ. Уменьшение продолжительности предварительной выдержки менее 10 часов не позволит достичь поставленной цели, а именно в результате электролитического рафинирования получить катодную медь, характеризующуюся гладкой поверхностью и мелкокристаллической структурой, при снижении расхода тиокарбамида, вводимого в числе комплекса добавок ПАВ. Увеличение продолжительности предварительной выдержки раствора тиокарбамида более 70 часов создает трудности исполнения, связанные со значительным увеличением промежуточного оборудования для приготовления раствора тиокарбамида, и потребует неоправданного дополнительного расхода энергоресурсов для поддержания необходимой температуры раствора. Сведений об известности отличительного признака предлагаемого технического решения при изучении патентной и технической литературы не выявлено, что свидетельствует о соответствии заявляемого объекта критерию «изобретательский уровень». Способ осуществляется следующим образом. Тиокарбамид предварительно растворяют при температуре 40-70°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600, и выдерживают раствор тиокарбамида при температуре 40-70°С в течение 10-70 часов. Приготовленный раствор вводят в числе других растворов, входящих в комплекс добавок ПАВ, в поток электролита, поступающего в электролизные ванны для осуществления процесса электролитического рафинирования меди. Процесс электролитического рафинирования меди осуществляется следующим образом. В электролизные ванны на токоподводящие анодную и катодную шины завешивают соответствующие электроды. В качестве анодов используют литые пластины из меди огневого рафинирования, в качестве катодов – тонкие листы из электролитной меди (основа) или матрицы из титана (или нержавеющей стали). На электролизную ванну подают постоянный электрический ток из расчета катодной плотности тока 250-360 А/м2. Электрохимическое растворение медных анодов и катодное осаждение меди из сульфатного электролита осуществляют при его постоянной циркуляции и температуре 60-65°С. Эффективность способа оценивается по результатам электролиза в части удельного расхода электроэнергии и получения катодной меди, имеющей гладкую поверхность, мелкокристаллическую структуру, низкое содержание серы и высокое значение спирального удлинения, характеризующего прокатываемость меди. Предлагаемый способ описан в конкретных примерам и таблице 1. Пример 1 (таблица 1, опыт 1) – реализация способа прототипа. Заданные количества добавок ПАВ, рассчитанные по расходу, г/тCu: клея – 70 (1,6 г/дм3); продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот – 85 (2,0 г/дм3) растворяли в дистиллированной воде при температуре 70°С. Приготовленные растворы каждого ПАВ вводили в сульфатный электролит для электролитического рафинирования меди, поступающий в электролизную ванну. Для опыта использовали сульфатный электролит следующего состава, г/дм3: меди – 50-55; никеля – 19-22; серной кислоты – 155-161; хлор-иона – 0,045-0,050. Электролитическое рафинирование меди осуществляли на лабораторной установке, состоящей из электролизной ванны емкостью 4 дм3 и напорного бачка емкостью 10 л. Ванну обеспечивали индивидуальной системой циркуляции и оборудовали анодной и катодной шинами, подключенными через лабораторный автотрансформатор (ЛАТР) к выпрямителю ВСА-5. На катодную и анодную шины электролизной ванны на расстоянии 4 см завешивали один катод, два медных анода и пропускали постоянный ток. Катодная плотность тока составляла 310 А/м2. Добавки ПАВ в течение испытаний вводили с равной периодичностью. В течение эксперимента поддерживали температуру электролита 60-65°С, скорость циркуляции 4 дм3/ч. Продолжительность эксперимента составляла 94 часа. В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями: – мелкокристаллической структурой; – наличием мелких округлых наростов; – содержанием серы – 10 г/т; – низким показателем спирального удлинения, равным 368 мм. Удельный расход электроэнергии составил 336 кВт·ч/тCu. Пример 2 (таблица 1, опыт 2) – реализация способа-прототипа. Эксперимент осуществляли при тех же условиях, что и пример 1. Пример 2 отличался от примера 1 расходом продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот на тонну катодной меди, который составлял – 200 (5,0 г/дм3). В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями: – мелкокристаллической структурой; – незначительной бороздчатостью; – содержанием серы – 12 г/т; – спиральным удлинением, равным 351 мм. Удельный расход электроэнергии составил 371 кВт·ч/тCu. Пример 3 (таблица 1, опыт 3) – реализация способа прототипа Эксперимент осуществляли при тех же условиях, что и пример 1. Пример 3 отличался от примера 1 расходом продукта конденсации тиокарбамида (тиомочевины) и аминоамидов жирных кислот на тонну катодной меди, который составлял – 200 (5,0 г/дм3), и концентрацией никеля (25 г/дм3) и серной кислоты (120 г/дм3). В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями: – мелкокристаллической структурой; – незначительной бороздчатостью; – содержанием серы – 14 г/т; – низким показателем спирального удлинения, равным 339 мм. Удельный расход электроэнергии составил 445 кВт·ч/тCu. Пример 4 (таблица 1, опыт 4) – реализация заявляемого способа Эксперимент по электролитическому рафинированию меди осуществляли при тех же условиях, что и пример 1. Пример 4 отличался от примера 1 введением в качестве добавок растворов ПАВ, рассчитанных по расходу, г/тCu: клея – 70 и тиокарбамида – 30 г. При этом раствор тиокарбамида предварительно приготавливали. Тиокарбамид растворяли при температуре 40°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20, и выдерживали раствор тиокарбамида при температуре 40°С в течение 10 часов. Приготовленный раствор вводили в числе других растворов, входящих в комплекс добавок ПАВ, в поток электролита, поступающего в процессе электролитического рафинирования меди в электролизные ванны при осуществлении процесса электролитического рафинирования меди. Добавки ПАВ в течение испытаний вводили с равной периодичностью. В течение эксперимента поддерживали температуру электролита 60-65°С, скорость циркуляции 4 дм3/ч. Продолжительность эксперимента составляла 94 часа. В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями: – мелкокристаллической структурой и гладкой поверхностью катода; – содержанием серы – 6 г/т; – высоким показателем спирального удлинения, равным 419 мм. Удельный расход электроэнергии составил 284 кВт·ч/тCu. Пример 5 (таблица 1, опыт 5) – реализация заявляемого способа Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 5 отличался от примера 4 условиями подготовки раствора тиокарбамида. Подготовка раствора тиокарбамида содержала следующие операции: – растворение при температуре 70°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 600; – выдержку приготовленного раствора в течение не более 70 часов при температуре 70°С. В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями: – мелкокристаллической структурой и гладкой поверхностью катода; – содержанием серы – 5 г/т; – высоким показателем спирального удлинения, равным 424 мм. Удельный расход электроэнергии составил 300 кВт·ч/тCu. Пример 6 (таблица 1, опыт 6) – реализация заявляемого способа Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 6 отличался от примера 4 условиями подготовки раствора тиокарбамида. Подготовка раствора тиомочевины содержала следующие операции: – растворение при температуре 60°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 300; – выдержку приготовленного раствора в течение 24 часов при температуре 60°С. В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями: – мелкокристаллической структурой и гладкой поверхностью катода; – содержанием серы – 4 г/т; – высоким показателем спирального удлинения, равным 431 мм. Удельный расход электроэнергии составил 292 кВт·ч/тCu. Пример 7 (таблица 1, опыт 7) – реализация за пределами диапазона заявляемого способа Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 7 отличался от примера 4 условиями подготовки раствора тиокарбамида. Подготовка раствора тиомочевины содержала следующие операции: – растворение при температуре 30°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 18; – выдержку приготовленного раствора в течение 8 часов при температуре 30°С. В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями: – наличием мелких дендритных наростов на поверхности катода; – содержанием серы – 8 г/т серы; – спиральное удлинение было равно 348 мм. Удельный расход электроэнергии составил 314 кВт·ч/тCu. Полученные результаты, а именно снижение качества катодной меди по внешнему виду, увеличение содержания в ней серы, снижение физико-механического показателя спирального удлинения и увеличение удельного расхода электроэнергии относительно примеров 4-6, показывают, что условия подготовки тиокарбамида не являются оптимальными. Пример 8 (таблица 1, опыт 8) – реализация способа за пределами заявляемого диапазона. Эксперимент осуществляли при тех же условиях, что и пример 4. Пример 8 отличался от примера 4 условиями подготовки раствора тиокарбамида. Подготовка раствора тиомочевины содержала следующие операции: – растворение при температуре 80°С в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 650; выдержку приготовленного раствора в течение 80 часов при температуре 90°С. Использование, в данном случае, значительной величины массового отношения ионов меди и серы, содержащейся в тиокарбамиде, привело к неоправданному увеличению объемов раствора тиокарбамида при соответственном увеличении промежуточных емкостей и к значительному увеличению продолжительности работы оборудования (термостата), поддерживающего заданную температуру раствора. В результате электролитического рафинирования получили катодную медь, характеризующуюся следующими показателями: – наличие мелких дендритных наростов; – содержание серы составило 9 г/т серы; – спиральное удлинение было равно 343 мм. Удельный расход электроэнергии составил 324 кВт·ч/тCu. Результаты эксперимента, а именно снижение качества катодной меди по внешнему виду, снижение физико-механического показателя спирального удлинения и увеличение удельного расхода электроэнергии относительно примеров 4-6, подтверждают, что используемые в данном примере условия подготовки тиокарбамида не являются оптимальными. Согласно полученным экспериментальным данным (опыты 4-6) предлагаемый способ по п.1 или п.2 приготовления электролита для электролитического рафинирования меди в присутствии комплекса поверхностно-активных веществ, в числе которых используют тиокарбамид, включающий его предварительную обработку сульфатным раствором меди, действительно является эффективным. Осуществление способа подготовки электролита для электролитического рафинирования меди по примерам 4-6 позволяет повысить качество катодной меди, уменьшить содержание серы в ней, улучшить показатель спирального удлинения, характеризующий пригодность катодной меди для производства катанки методом непрерывного литья и проката, и снизить на 18-57% удельный расход электроэнергии на производство катодной меди относительно прототипа (примеры 1-3). Представленные результаты экспериментов подтверждают, что выбранные границы для условий подготовки электролита в предлагаемых формулой пределах являются правильными. При выходе значений параметров подготовки электролита за пределы заявленных диапазонов (опыты 7-13) основные технологические показатели ухудшаются, приближаясь к результатам, получаемым по способу-прототипу. Этим подтверждается, что выбранные границы для условий подготовки электролита в предлагаемых формулой пределах являются правильными. Таким образом, технический результат, достигаемый использованием предлагаемого способа, заключается в следующем: – в повышении качества катодной меди по внешнему виду, химическому составу и физико-механическим показателям, в частности по величине спирального удлинения, связанного со снижением содержания в ней серы; – в снижении на 18-57% удельного расхода электроэнергии на производство катодной меди.
Используемые источники 2. Технологическая инструкция производства электролитной меди ТИ 14.55-46-99. Срок введения 01.09.98 – с.48. 3. Патент ПНР, кл.40 с1 / 16, / С 22 D 1/16, №66979, заявл. 10.04.69, опубл. 31.03.73 г. 4. SU 907088 А (БУГАЕВА А.В. и др.), 23.02.1982.
Формула изобретения
1. Способ приготовления электролита для электролитического рафинирования меди, включающий введение в сульфатный электролит комплекса поверхностно-активных веществ, в числе которых вводят тиокарбамид, с предварительным растворением тиокарбамида, отличающийся тем, что тиокарбамид растворяют в сульфатном растворе меди при массовом отношении ионов меди и серы, содержащейся в тиокарбамиде, равном 20-600 при температуре 40-70°С и выдерживают при температуре 40-70°С в течение 10-70 ч. 2. Способ по п.1, отличающийся тем, что в качестве сульфатного раствора меди при обработке тиокарбамида используют исходный электролит.
MZ4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение на основании заявления патентообладателя
Дата прекращения действия патента: 13.07.2009
Извещение опубликовано: 20.09.2009 БИ: 26/2009
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||