Патент на изобретение №2279423

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2279423 (13) C1
(51) МПК

C07C51/36 (2006.01)
C07C61/08 (2006.01)
C07C51/353 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.12.2010 – может прекратить свое действие

(21), (22) Заявка: 2005108245/04, 23.03.2005

(24) Дата начала отсчета срока действия патента:

23.03.2005

(46) Опубликовано: 10.07.2006

(56) Список документов, цитированных в отчете о
поиске:
JP 09040606 A, 10.02.1997. US 5936126 A, 10.08.1999. JP 60-258141 A, 20.12.1985. SU 1659395 A1, 30.06.1991. US 6284917 A, 04.09.2001.

Адрес для переписки:

150023, г.Ярославль, Московский пр., 88, ЯГТУ, Ректору Ю.А.Москвичеву

(72) Автор(ы):

Обухова Татьяна Александровна (RU),
Бетнев Александр Федорович (RU),
Базурин Алексей Александрович (RU),
Красников Сергей Владиславович (RU),
Овсянников Олег Николаевич (RU)

(73) Патентообладатель(и):

Ярославский государственный технический университет (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ТРАНС-4-АЛКИЛЗАМЕЩЕННЫХ ЦИКЛОГЕКСАНКАРБОНОВЫХ КИСЛОТ

(57) Реферат:

Изобретение относится к усовершенствованию способа получения транс-4-алкилзамещенных циклогексанкарбоновых кислот общей формулы:

где R – алкильный и транс-4-алкилциклогексильный радикал с числом атомов углерода от одного до десяти в алкильной группе, путем гидрирования соответствующих 4-алкилзамещенных бензойных кислот в водно-щелочном растворе при повышенной температуре и повышенном давлении водорода 0,5-15 МПа в присутствии катализатора с последующей изомеризацией при температуре 200-400°С и выделением продуктов реакции изомеризации подкислением смеси, в котором в качестве катализатора используется рутениево-никелевый катализатор, нанесенный на уголь, с содержанием металлов 5 мас.% в расчете на весь катализатор при массовом соотношении Ni:Ru (0,01-1,5):(8,5-9,99), процесс гидрирования ведут при температуре 20-150°С в течение 0,25-1 часа, а процесс изомеризации проводят в атмосфере инертного газа в несколько стадий после фильтрования смеси для отделения катализатора. Полученные соединения являются ценными полупродуктами для получения как жидкокристаллических материалов, так и биологически активных соединений. Задача, решаемая изобретением, – это удешевление, уменьшение времени и повышение эффективности процесса получения транс-4-алкилзамещенных циклогексанкарбоновых кислот с использованием рутениево-никелевого катализатора, увеличение срока службы катализатора. 1 табл.

Изобретение относится к области промышленного органического синтеза, а именно к усовершенствованию способа получения транс-4-замещенных циклогексанкарбоновых кислот общей формулы:

(где R – алкильный и транс-4-алкилциклогексильный радикал с числом атомов углерода от одного до десяти в алкильной группе), гидрированием соответствующих 4-алкилзамещенных бензойных кислот в присутствии рутениево-никелевого катализатора на носителе с содержанием металлов 5 мас.% в расчете на весь катализатор, являющихся ценными полупродуктами для получения как жидкокристаллических материалов, так и биологически активных соединений.

Известен способ получения замещенных циклогексанкарбоновых кислот общей формулы , где R – NH2CH2 (аминометил) путем гидрирования соответствующей замещенной бензойной кислоты в водно-щелочном растворе под давлением 5-20 МПа при нагревании до 90-200°С в присутствии рутениевого катализатора [Патент США №3932497, кл. 562/507, 562/442, С 07 С 51/36, опубл. 1976 г.]. Выход транс-изомера 30-40%. Основными недостатками указанного способа являются: низкий выход транс-изомера, сравнительно жесткие условия проведения процесса, а именно высокое давление 5-20 МПа, высокие температуры протекания реакции 90-200°С, быстрое отравление катализатора.

Наиболее близким по технической сущности и достигаемым результатам является способ получения транс-4-замещенных циклогексанкарбоновых кислот общей формулы

(где R – алкильная или алкоксильная группа с числом атомов углерода от одного до восемнадцати) путем каталитического гидрирования соответствующих 4-алкилзамещенных бензойных кислот в водно-щелочном растворе под давлением, при нагревании, в присутствии рутениевого катализатора, с последующей изомеризацией в присутствии водорода без отделения реакционной смеси от рутениевого катализатора, и выделения продукта подкислением смеси [Патент Японии №9040606, кл. С 07 С 61/08, B 01 J 23/46, С 07 С 51/36, С 07 С 62/10, опубл. 1997 г.]. Процесс проходит за 0,5-8 ч (предпочтительно 0,5-2 ч) при давлении 0,5-15 МПа, температуре 50-150°С, температуре изомеризации 200-400°С и в качестве катализатора используют рутениевый катализатор с содержанием металла 5%, выход алкилциклогексанкарбоновых кислот 90% при выходе транс-изомера 60-70%. Основными недостатками указанного способа являются относительно низкий выход транс-изомера, возможность протекания побочных реакций в процессе высокотемпературной изомеризации в присутствии рутениевого катализатора.

Задачей, решаемой настоящим изобретением, является повышение эффективности процесса получения транс-4-алкилциклогексанкарбоновых кислот за счет увеличения выхода целевого продукта и удешевления катализатора.

Предлагаемый способ получения транс-4-алкилзамещенных циклогексанкарбоновых кислот заключается в гидрировании соответствующих алкилбензойных кислот водородом в водно-щелочной среде при температуре 20-150°С и давлениии 0,5-15 МПа в присутствии рутениево-никелевого катализатора, нанесенного на уголь, с содержанием металлов 5 мас.% в расчете на весь катализатор при массовом соотношении Ni:Ru (0,01-1,5):(8,5-9,99) с последующей изомеризацией продукта в атмосфере инертного газа при температуре 200-400°С. Процесс изомеризации проводят в несколько стадий после фильтрования смеси для отделения катализатора и выделением транс-изомера на каждой стадии.

Первым отличительным признаком данного изобретения следует считать использование рутениево-никелевого катализатора, нанесенного на уголь, с содержанием металлов 5 мас.% в расчете на весь катализатор при массовом соотношении Ni:Ru (0,01-1,5):(8,5-9,99). Известен способ получения замещенных циклогексанкарбоновых кислот гидрированием соответствующих ароматических карбоновых кислот на катализаторе, содержащем рутений и никель на угле с содержанием 0,01-30 мас.% металлов в расчете на весь катализатор, причем возможны различные соотношения Ru и Ni [US 5936126, опубл. 10.08.1999]. В данном способе не указаны возможные соотношения рутения и никеля, однако при содержании никеля в катализаторе больше 20% в расчете на массу всего металла наблюдается значительное снижение скорости реакции и неполная конверсия исходных ароматических кислот, что снижает выход целевого продукта и делает проблематичным его выделение.

Вторым отличительным признаком является проведение процесса изомеризации в несколько стадий. После первой стадии изомеризации содержание транс-изомера составляет примерно 80%, а цис-изомера – 20%, что соответствует равновесному состоянию, поэтому выход после данной стадии не может преышать 80%. Проведение нескольких стадий изомеризации с выделением целевого продукта на каждой стадии позволяет повысить выход транс-изомера до 95-98% и сделать процесс безотходным.

Гидрирование осуществляют в автоклаве с интенсивным перемешиванием, в нижней части которого предусмотрен вывод реакционной массы. В автоклав загружают водно-щелочной раствор 4-замещенной бензойной кислоты и рутениево-никелевый катализатор. Автоклав продувают азотом, создают необходимое давление водорода и нагревают при перемешивании до окончания поглощения водорода (0,25-1 ч). После сбрасывания давления реакционную массу через нижний вывод из автоклава отделяют от рутениево-никелевого катализатора путем отфильтровывания и выдеживают в течение 0,5-1 ч при 200-400°С в атмосфере инертного газа. Подкислением водно-щелочного раствора соляной кислотой выделяют смесь цис- и транс-4-алкилзамещенных циклогексанкарбоновых кислот (содержание транс-изомера 70-85%) и вымораживанием из гексана получают чистый транс-изомер. Маточные растворы после отдувки гексана снова растворяют в водной щелочи и подвергают повторной термической изомеризации описанным способом. После 4-кратного повторения процесса изомеризации выход транс-алкилциклогексанкарбоновых кислот достигает 95-98%. Один и тот же рутениево-никелевый катализатор может использоваться без существенной потери активности в течение 15 циклов гидрирования.

Изобретение иллюстрируется следующими примерами.

Пример 1

В автоклав емкостью 2 л, снабженный быстроходной мешалкой, загружают 350 г (1,97 моля) n-бутилбензойной кислоты, 18,5 г рутениево-никелевого катализатора (соотношение Ni_Ru=1:9), 1 литр дистиллированной воды и 110,3 г КОН (1,97 моля). Реакцию проводят при 100°С и давлении водорода 4 МПа. Поглощение водорода заканчивается через 0,5 ч после начала реакции. После сбрасывания давления реакционную массу отделяют от рутениево-никелевого катализатора путем отфильтровывания и подвергают термической изомеризации путем выдерживания в течение 1,0 ч при 200-300°С в атмосфере инертного газа до содержания транс-изомера 75%. Чистый транс-изомер выделяют при подкислении реакционной смеси HCl до рН=2 и перекристаллизации из гексана. Маточный раствор после отгонки гексана и растворения остатка в водной щелочи подвергают повторной изомеризации. Выход трансизомера 4-н-бутилциклогексанкарбоновой кислоты после 4 рециклов составляет 343 г (95%), т.пл. 41°С.

В таблице приведены примеры 1-10 гидрирования алкилбензойных кислот в присутствии рутениево-никелевого катализатора. Обработка реакционной смеси, операции по термической изомеризации и выделению транс-изомера во всех опытах аналогичны.

Таким образом, предложенный способ получения транс-4-замещениых циклогексанкарбоновых кислот с использованием рутениево-никелевого катализатора позволяет:

1) повысить выход целевых продуктов за счет проведения нескольких стадий термической изомеризации после фильтрования смеси для отделения катализатора;

2) избежать протекания побочных реакций, а также дополнительного механического износа катализатора и увеличить срока службы катализатора за счет промотирования никелем, что приводит к уменьшению скорости его отравления за счет большей устойчивости системы к каталитическим ядам.

Разработанный способ может быть использован для организации промышленного производства рутениево-никелевого катализатора и транс-4-замещенных циклогексанкарбоновых кислот.

Таблица
Гидрирование алкилбензойных кислот в присутствии рутениево-никелевого катализатора
№№ примера Радикал R Масса кислоты, г Соотношение Ni:Ru Масса катализатора, г Р, МПа Т, °С Время реакции, ч Выход транс-изомера, % Количество рециклов
1 н-С4Н9 350 1:9 18,5 4 100 0,5 95 4
2 н-С4Н9 350 0,01:9,99 18,5 4 100 0,8 90 5
3 н-С4Н9 350 2,0:8,0 18,5 4 100 5 5,0 при степени превращения 20% 1
4 СН3 136 1:9 6,8 4 100 0,4 96 4
5 СН3 136 1:9 6,8 4 100 0,4 98 5
6 н-С3Н7 164 1:9 8,2 4 100 0,65 94 4
7 н-С3Н7-(прототип) 123,1 5% Ru 6,2 5 130 1,5 60,4 1
8 н-C10H21 131 1:9 6,5 4 100 0,75 96 5
9 126 1:9 6,3 4 100 0,8 94 5
10 140 1:9 7,0 4 100 0,8 92 5

Формула изобретения

Способ получения транс-4-алкилзамещенных циклогексанкарбоновых кислот общей формулы:

где R – алкильный и транс-4-алкилциклогексильный радикал с числом атомов углерода от одного до десяти в алкильной группе, путем гидрирования соответствующих 4-алкилзамещенных бензойных кислот в водно-щелочном растворе при повышенной температуре и повышенном давлении водорода 0,5-15 МПа в присутствии катализатора с последующей изомеризацией при температуре 200-400°С и выделением продуктов реакции изомеризации подкислением смеси, отличающийся тем, что в качестве катализатора используется рутениево-никелевый катализатор, нанесенный на уголь, с содержанием металлов 5 мас.% в расчете на весь катализатор при массовом соотношении Ni:Ru (0,01-1,5):(8,5-9,99), процесс гидрирования ведут при температуре 20-150°С в течение 0,25-1 ч, а процесс изомеризации проводят в атмосфере инертного газа в несколько стадий после фильтрования смеси для отделения катализатора.

Categories: BD_2279000-2279999