Патент на изобретение №2155947
|
||||||||||||||||||||||||||
(54) СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО МЕСТА НЕГЕРМЕТИЧНОСТИ В ДЛИННОМЕРНЫХ ИЗДЕЛИЯХ
(57) Реферат: Изобретение используется для определения расстояния до места негерметичности в длинномерных изделиях, в частности в подземных электрических кабелях связи. Техническим результатом изобретения является повышение точности и упрощение процесса определения расстояния до места негерметичности в длинномерных изделиях. Это обеспечивается за счет того, что определение расстояния до места негерметичности в длинномерных изделиях, находящихся под избыточным давлением газа, осуществляется путем замера расхода и перепада давления газа в герметичном изделии при односторонней подаче газа и последующего определения пневмопроводимости изделия по формуле в зависимости от отношения объемного расхода газа на длине между концами изделия к перепаду давления на концах изделия. Затем замеряют расход и давление газа на концах негерметичного изделия и определяют расстояние до места негерметичности по формуле, учитывающей расстояние до места негерметичности от первого конца изделия, объемный расход газа, подаваемый в изделие соответственно через первый и второй концы, давление газа соответственно на первом и втором концах изделия и пневмопроводимость герметичного изделия. 1 ил. Изобретение относится к способам определения расстояния до места негерметичности длинномерных изделий, в частности подземных электрических кабелей связи. Известен способ определения расстояния до места негерметичности в подземных кабелях (способ учета расхода газа), основанный на измерении расхода газа (воздуха), подаваемого в кабель с двух концов [1]. Недостатком этого способа является низкая точность определения расстояния до места негерметичности в кабеле. Погрешность составляет 2,5 – 4%. Известен манометрический способ определения расстояния до места негерметичности в кабеле, основанный на одновременном измерении манометрами давления газа в нескольких точках кабеля [2]. Манометрический способ имеет более высокую точность определения расстояния до места негерметичности в кабеле по сравнению с расходным (погрешность составляет 1,5%). Однако он является сложным и трудоемким, так как требует оборудования нескольких контрольных пунктов для измерения давления газа и графического построения распределения давления газа по длине кабеля. Наиболее близким по технической сущности к предлагаемому изобретению является способ определения расстояния до места негерметичности в длинномерных изделиях, находящихся под избыточным давлением газа, путем измерения расхода и давления газа в нескольких точках на известных расстояниях от концов кабеля и определения по ним расстояния до места негерметичности [2]. Основными недостатками известного способа являются; 1. Недостаточно высокая точность определения расстояния до места негерметичности из-за наличия дополнительных погрешностей, вызванных измерениями расхода и давления газа в нескольких точках на известных расстояниях от концов кабеля, а также измерениями этих расстояний. 2. Сложность процесса определения расстояния до места негерметичности, трудоемкость и длительность испытаний, особенно в подземных электрических кабелях связи, проложенных в твердых грунтах, районах вечной мерзлоты и под водой. Изобретение направлено на повышение точности и упрощение процесса определения расстояния до места негерметичности в длинномерных изделиях. Это достигается тем, что в известном способе определения расстояния до места негерметичности в длинномерных изделиях, находящихся под избыточным давлением газа, путем измерения расхода и давления газа в нескольких точках изделия и определения по ним расстояния до места негерметичности, сначала замеряют расход и перепад давления газа в герметичном изделии при односторонней подаче газа и определяют пневмопроводимость изделия по формуле: где Q – объемный расход газа; L – длина между концами изделия; P = P1-P2 – перепад давления на концах изделия, затем замеряют расход и давление газа на концах негерметичного изделия и определяют расстояние до места негерметичности по формуле: где Lxi – расстояние до места негерметичности от первого конца изделия; Q1, Q2 – объемный расход газа, подаваемый в изделие соответственно через первый и второй концы; Pi и P2 – давление газа соответственно на первом и втором концах изделия; – пневмопроводимость герметичного изделия. Предложенный способ позволяет: 1) повысить точность определения (с погрешностью до 1%) расстояния до места негерметичности в длинномерных изделиях, во-первых, в результате измерения расхода и давления газа только на концах изделия (в прототипе измерение этих параметров осуществляется в нескольких точках по длине изделия) исключаются погрешности, вызванные дополнительными измерениями указанных параметров в нескольких точках по длине изделия; во-вторых, за счет введения в формулу для определения расстояния до места негерметичности пневмопроводимости, учитывающей геометрические (размеры проходных сечений изделия) и физические (вязкость газа) свойства изделия в реальных условиях эксплуатации; в-третьих, в результате измерения расхода и давления газа, а также пневмопроводимости одними и теми же приборами, так как они установлены только в двух точках – на концах изделия (в прототипе измерение этих параметров в нескольких точках по длине изделия осуществляется с помощью установки дополнительных приборов); 2) снизить трудозатраты и расходы, длительность испытаний на отыскание места негерметичности в длинномерных изделиях, особенно в изделиях, находящихся в тяжелых условиях эксплуатации (под землей, под водой) в результате исключения размещения дополнительных контрольных пунктов по длине изделия и, следовательно, установки дополнительных приборов и оборудования; 3) обеспечить удобство и простоту обслуживания системы определения расстояния до места негерметичности в результате размещения необходимых приборов и оборудования только в двух стационарных местах – на концах исследуемого изделия. На чертеже представлена схема устройства, реализующего предложенный способ. Устройство содержит длинномерное изделие 1, например, в виде подземного электрического кабеля связи длиной L, концы 2 и 3 кабеля, место 4 повреждения герметичности кабеля, расположенное на расстоянии Lxi от конца 2, подводящие газопроводы 5 и 6, ранометры 7 и 8, расходомеры 9 и 10, регулируемые пневмодроссели 11 и 12, запорные вентили 13 и 14. Изобретение реализуется следующим образом. Заведомо до определения расстояния до места негерметичности в кабеле проводят испытания его на герметичность и определение пневмопроводимости. Газ (обычно воздух) с одинаковым по величине давлением питания Pп1 = Pп2 подают через открытые вентили 13, 14, регулируемые дроссели 11, 12, расходомеры 9, 10, подводящие газопроводы 5, 6 с расходами Q1, Q2 и давлениями P1, P2 соответственно на оба конца 2 и 3 кабеля. При установившемся режиме движения газа закрывают вентили 13 и 14 и по показаниям манометров 6 и 7 судят о герметичности кабеля. Поддержание давлений P1 и P2 на определенном уровне в течение заданного времени свидетельствует о герметичности кабеля. По неравенству этих давлений и наличию расхода газа через кабель судят о негерметичности кабеля. Пневмопроводимость определяют по результатам испытаний герметичного кабеля. Известно, что в длинномерных изделиях большой длины с малыми размерами проходного сечения различной формы (круглой, прямоугольной или иной), у которых отношение длины к диаметру или условному диаметру (для сечений, отличных от круглой формы) велико, реализуется ламинарный режим течения газа [3]. Условный диаметр равен двум гидравлическим диаметрам. Этот диаметр равен отношению площади живого сечения газового потока к его смоченному периметру. К такому виду изделий относятся подземные электрические кабели связи [4]. Объемный расход газа Q через кабель длиной L определяют по формуле Пуазейля; где G – массовый расход газа; средняя плотность газа; среднее абсолютное давление газа; R – газовая постоянная данного газа; Т – температура газа; – динамический коэффициент вязкости газа; d – условный диаметр одного свободного канала сердечника кабеля; n – число свободных каналов в кабеле; – пневмопроводимость кабеля, равная . Из формулы (2) видно, что пневмопроводимость кабеля при постоянных значениях размеров проходного сечения кабеля и вязкости газа является величиной постоянной. Таким образом, из формулы (1) следует, что объемный расход газа через кабель пропорционален перепаду давления на концах кабеля и обратно пропорционален его длине. Рассчитать величину по формуле (2) представляет большую сложность из-за трудности определения размеров и количества проходных сечений кабеля. Поэтому наиболее достоверным способом определения величины проводимости является экспериментальный. По замеренным расходу и давлениям газа на концах герметичного кабеля определяют пневмопроводимость по соотношению: полученному из формулы (1). Причем эти параметры измеряют при установившемся режиме движения газа, подаваемого только с одного конца кабеля. При этом другой конец кабеля открыт и связан с атмосферой (избыточное давление газа P2 = 0). Так как пневмопроводимость является постоянной величиной, то достаточно для ее определения одного замера расхода и перепада давления газа в кабеле только с одного контрольного пункта, оборудованного на одном из концов кабеля, так как другой конец кабеля соединен с атмосферой. Испытаниями установлена справедливость соотношения (2), а именно, что пневмопроводимость является величиной постоянной для исследуемого типа кабеля, как герметичного, так и негерметичного, независимо от изменения расходов и давлений газа на обоих его концах. Следовательно, при определении расстояния до места негерметичности в кабеле с помощью аналитической формулы, в которую входит пневмопроводимость, можно пользоваться данными для проводимости, полученными для герметичного кабеля. С целью повышения достоверности и точности рекомендуется проводить испытания по определению величины пневмопроводимости кабеля после прокладки его в траншее. В случае обнаружения негерметичности кабеля расстояние до места негерметичности определяют в следующем порядке. Газ с одинаковыми по величине давлениями питания Pп1 = Pп2 подают через открытые вентили 13, 14, регулируемые дроссели 11, 12, настроенные на определенные уровни давлений, расходомеры 9, 10, подводящие газопроводы 5, 6 с расходами Q1, Q2 и давлениями P1, P2 соответственно на оба конца 2 и 3 кабеля 1. Замеряют величины расходов Q1, Q2 с помощью расходомеров 9 и 10 и давлений P1, P2 с помощью манометров 7 и 8. Согласно формуле (1) определяют расход газа Q1 по формуле а расход газа Q2 – по формуле Здесь Px – давление газа в месте негерметичности, расположенном на расстоянии Lx1 от конца 2 кабеля. Суммарный расход газа Qx через поврежденное место негерметичного кабеля определяют как сумму расходов газа, подаваемого через оба конца кабеля Qx = Q1 + Q2. (6) Из формулы (4) находим давление газа Px Подставляя значение Px в формулу (5), окончательно находим расстояние Lx1 до места негерметичности в кабеле Входящие в формулу (8) параметры имеют размерности: Lx1, L-м; Q2, Qx – л/мин; P1, P2 – Па; Для подтверждения достоверности формулы (8) проверяют ее правильность при других величинах расходов и давлений газа. Для этого с помощью регулируемых дросселей 11 и 12 устанавливают новые значения Q1, Q2, P1, P2 и по ним вновь определяют расстояние Lx1. Вычисляя среднее арифметическое значение полученных величин Lx1 при разных расходах и давлений, находят тем самым действительное значение расстояния до места негерметичности в кабеле. Предлагаемый способ экспериментально проверен в лабораторных условиях на реальном подземном кабеле телефонной сети длиной L = 180 м с местом повреждения герметичности в виде отверстия диаметром 0,5 мм, расположенным на расстоянии Lx1 = 163 м. В результате испытаний герметичного кабеля (в отсутствии отверстия) с односторонней подачей воздуха при P2 = 0 получены следующие данные: Q = Q1 = 0,4 л/мин; P1 = 0,047105 Па. По этим данным с помощью соотношения (3) находим пневмопроводимость кабеля При испытаниях негерметичного кабеля получены следующие данные: Q1 = 0,55 л/мин; P1 = 0,45310550 Па; Q2 = 1,27 л/мин; P2 = 0,411105 Па. Подставляя эти данные в формулу (8) с учетом полученной величины проводимости определяем расчетное расстояние L’x1 до места негерметичности в кабеле При этом относительная погрешность определения расстояния до места негерметичности в подземном кабеле составит Таким образом предлагаемый способ позволяет повысить точность и упростить процесс определения расстояния до места негерметичности в подземном кабеле за счет исключения погрешностей известных способов в 2…3 раза и более по сравнению с расходным методом, погрешность которого составляет 2,5. . . 4%, и в 1,4 раза по сравнению с манометрическим методом, погрешность которого составляет 1,5%. Применение изобретения позволяет повысить точность и упростить процесс определения расстояния до места негерметичности в электрических кабелях связи, трубопроводах, газовых линий различных приборов и в других длинномерных изделиях, находящихся под избыточным давлением газа. Источники информации 1. Руководство по содержанию электрических кабелей связи под избыточным воздушным давлением на магистральной и внутризоновых первичных сетях. М.: Прейскурантиздат, 1988, с. 6, 80; 85 – 89. 2. Авторское свидетельство СССР N 1779964, кл. G 01 M 3/28, 1990. 3. Дмитриев В. Н. , Градецкий В. Г. Основы пневмоавтоматики. М.: Машиностроение, 1973, с. 34 – 37. 4. Гроднев И.И., Верник С.М. Линии связи. М.: Радиосвязь, 1988, с. 42 – 57. Формула изобретения
где Qr – объемный расход газа, подававшийся на вход герметичного изделия; L – длина между первыми и вторыми концами изделия; Pr – давление на входе герметичного изделия, а затем замеряют расход и давление газа на концах негерметичного изделия и определяют расстояние до места негерметичности по формуле где Lх1 – расстояние до места негерметичности от первого конца изделия; Q1, Q2 – объемный расход газа, подаваемый в негерметичное изделие соответственно через первый и второй концы; Р1, Р2 – давление газа соответственно на первом и втором концах негерметичного изделия; г – пневмопроводимость герметичного изделия. РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 16.06.2001
Номер и год публикации бюллетеня: 33-2002
Извещение опубликовано: 27.11.2002
|
||||||||||||||||||||||||||