Патент на изобретение №2270266
|
||||||||||||||||||||||||||
(54) ЛИГАТУРА ДЛЯ МОДИФИЦИРОВАНИЯ И ЛЕГИРОВАНИЯ СПЛАВОВ
(57) Реферат:
Изобретение относится к металлургии, в частности к обработке расплавов металлов и сплавов легирующими и модифицирующими добавками. Лигатура содержит 14-17% магния, 0,4-0,6% церия, остальное – никель и примеси и изготовлена в виде фрагментированных частиц сплава. Размер частиц составляет от 0,5 до 4 мм. В примесях содержание углерода заключено в пределах от 0,001 до 0,1%. Изобретение позволяет получать чугуны с шаровидным графитом, а также расширяет возможности при производстве слитков из сплавов с улучшенной структурой в цветной металлургии. 1 з.п. ф-лы.
Предлагаемый объект относится к области металлургии, в частности к обработке расплавов металлов и сплавов легирующими и модифицирующими добавками. Из уровня техники известны составы и конфигурация модифицирующих и легирующих добавок в расплавы металлов, позволяющих улучшить структуру выплавляемого сплава, однородность распределения легирующих компонентов, степень усвоения лигатур [1]. Одним из металлов, позволяющих осуществить процесс модифицирования, является церий. Другим элементом, позволяющим осуществить десульфурацию расплава (железа, меди и др.) является магний. В состав лигатур вводят также утяжеляющие добавки тяжелых цветных металлов (никеля, меди), что позволяет сообщить лигатуре более высокую плотность, в результате при добавке в расплав базового металла, куски лигатуры тонут, что предотвращает угар. Эти элементы входят в состав лигатур, используемых для обработки расплавов черных металлов. Так, для улучшения свойств металла в европейском патенте [2] предлагается обрабатывать расплав чугуна лигатурой, содержащей 0,1…10% кремния, 0,5…4,0% магния, до 10% никеля и до 2% церия. В патенте Великобритании [3] для производства ковкого чугуна, в особенности перлитного состава, предлагается использовать лигатуру, содержащую 20…70% меди, 6…30% магния, 1,2…2% церия, никель – остальное. Использование лигатуры позволяет получить чугун с шаровидным графитом, за счет чего повышаются прочностные свойства металла. Использование церия в качестве модифицирующей добавки, наряду с магнием, никелем и кремнием предусмотрено также в патентах Германии [4, 5]. Это позволяет получить ковкий чугун с ферритной структурой и компактной формой графита. Недостатком известных видов лигатур является отсутствие ограничений на размер частиц материала, вводимого в расплав. В черной металлургии предполагается, что масса и размер частиц, вводимых в металл должны обеспечить быстрое погружение лигатуры в расплав и отсутствие угара элементов. Это является важным требованием, поскольку все элементы, входящие в состав лигатур такого типа, обладают высокой реакционной способностью по отношению к печной атмосфере. Наиболее близким по совокупности существенных признаков является лигатура, выпускаемая для нужд заводов черной металлургии в соответствии с нормативным документом [6]. Лигатура по прототипу, предназначена для модифицирования и легирования сплавов и содержит 85% никеля, 14-17% магния, 0,4-0,6% церия, остальное – никель и изготовлена в виде фрагментированных частиц сплава с размером частиц от 20 до 110 мм (что соответствует массе кусков от 0,5 до 6 кг). В лигатуре по прототипу допускается содержание углерода до 0,5%. Лигатура предназначена для легирования и модифицирования расплавов чугунов с целью формирования в структуре графита шаровидной формы. Недостатком такого типа лигатуры является неудовлетворительный эффект при использовании в цветной металлургии. Это объясняется тем, что частицы лигатуры имеют слишком большой размер, что объясняется особенностями их использования при проведении операций доводки расплава в черной металлургии. В промышленности медных сплавов металлические расплавы имеют плотность около 8,9 г/см3. В черной металлургии плотность расплавов близка к показателю 7,8 г/см3. Таким образом, для того, чтобы вводимая в расплав лигатура не осталась на поверхности расплава в черной металлургии, ее утяжеляют никелем и достигают плотности выше 7,8 г/см3. Выполнение кусков больших размеров и массы позволяет уменьшить поверхность взаимодействия лигатуры с окружающей средой в момент ее введения в расплав. В промышленности тяжелых цветных металлов не удается утяжелить лигатуру выше плотности 8,9 г/см3, поскольку все металлы, входящие в состав лигатуры имеют плотность, меньшую 9,0 г/см3. Поэтому предусмотрены иные способы введения легирующих, модифицирующих и раскисляющих добавок. Таким образом, недостатком объекта по прототипу являются ограниченные технологические возможности: лигатуру можно использовать только в черной металлургии. Задачей, поставленной в настоящем техническом решении, является расширение технологических возможностей. Задача решается тем, что в отличие от прототипа размер частиц лигатуры составляет от 0,5 до 4 мм. В производстве медных сплавов лигатуру такого типа можно ввести непосредственно в кристаллизатор машины непрерывного литья заготовок, что описано в статье [7] и изобретениях [8, 9]. Но для ввода в кристаллизатор крупные куски лигатуры не подходят, поскольку они не успевают расплавиться. Поэтому частицы лигатуры должны быть намного меньше. В опытах установлено, что размер частиц должен составлять от 0,5 до 4 мм. Применение частиц размерами менее 0,5 мм приводит к выносу материала на поверхность слитка благодаря конвективным потокам в лунке, образующимся вследствие энергии падающей струи и наличию разницы температур между центром и поверхностью. Применение частиц размерами более 4 мм приводит к неполному расплавлению их в расплаве. Предлагается также ограничить содержание углерода в лигатуре в пределах от 0,001 до 0,1%. Это объясняется тем, что в случае прототипа углерод не является вредной примесью, поскольку он входит в составы чугунов как один из главных элементов химического состава. Ситуация резко изменяется при применении лигатуры упомянутого типа в промышленности тяжелых цветных металлов. Углерод является вредной примесью. Растворимость углерода в медно-никелевом сплаве, содержащем 30% никеля составляет 0,045% (мас.). При большем содержании углерод выделяется по границам зерен в виде графита и резко снижает коррозионную стойкость сплава за счет интерметаллической коррозии [10]. Именно поэтому химический состав предлагаемой лигатуры видоизменен по отношению к прототипу. При содержании в лигатуре углерода выше 0,1% его неблагоприятное воздействие оказывается ощутимым. При содержании в лигатуре углерода менее 0,001% стоимость очистки лигатуры от углерода возрастает, что делает процесс производства лигатуры нерентабельным. Пример 1. Выплавляли лигатуру с химическим составом: 13% магния, 0,55% церия, остальное – никель. С помощью дробилки лигатуру измельчали до фракций 0…30 мм и фракции разделяли на группы со следующим гранулометрическим составом: 0…0,5 мм; 0,5…4 мм, 4…30 мм. Фракции 0…0,5 мм вводили в кристаллизатор машины непрерывного литья заготовок при производстве слитка диаметром 200 мм сплава МНЖМц30-1-1. Наблюдали активный вынос фракций к стенке кристаллизатора потоками расплава в лунке. Пример 2. Фракции 4…30 мм вводили в кристаллизатор машины непрерывного литья заготовок. Крупные куски не успевали раствориться в сплаве и увлекались в слиток, что было установлено металлографическим анализом макроструктуры. Пример 3. Фракции 0,5…4 мм усваивались расплавом, в результате был получен сплав с заданным уровнем свойств. Таким образом, установлено, что предлагаемая лигатура должна иметь размеры фрагментированных частиц 0,5…4 мм. Пример 4. При установленных размерах частиц изменяли химический состав лигатуры в части содержания углерода. При отливке слитка по традиционной технологии (без добавки лигатуры) и содержании углерода в лигатуре больше 0,1% сплав обладал низким уровнем пластических характеристик: среднее значение относительного удлинения составляло 25% против среднего значения относительного удлинения для слитков, отлитых с добавкой лигатуры, 32%. Содержание углерода менее 0,001% достигается только за счет глубокого рафинирования никеля, что сильно удорожает производство, поэтому нецелесообразно. Применение отличительных признаков по заявляемому объекту позволило получить литые заготовки диаметром 200 мм из сплава МНЖМц30-1-1 с улучшенным уровнем структуры и свойств. Технический результат от применения заявляемого объекта заключается в расширении технологических возможностей при производстве слитков из сплавов в цветной металлургии с улучшенной структурой. Литература 1. Отливки из чугуна с шаровидным и вермикулярным графитом / Э.В.Захарченко, Ю.Н.Левченко, В.Г.Горенко и др. Киев: Наукова Думка, 1986. 248с. 2. Патент ЕР 0142585. Alloy and process for producing ductile and compacted graphite cast irons. Appl.: ELKEM METALS (US). Inv.: MCCLUHAN THOMAS K; WELLS III JAMES ENOCH; LINEBARGER HENRY F. IPC C 22 C 33/08; C 22 C 35/00; C 21 C 1/08. Publ.1985-05-29. 3. Патент GB 2129439. A copper-nickel-magnesium alloy for cast iron. Appl.: INST ODLEWNICTWA. Inv.: TYBULCZUK JERZY; CUPIAL JANUSZ. IPC C 22 C 19/03; C 22 C 9/06. Publ.1984-05-16. 4. Патент DE 10101159. Tough, ductile cast iron with ferritic structure and spheroidal graphite contains silicon, nickel, magnesium, cerium and antimony. Appl.: SIEMPELKAMP GMBH & CO (DE). Inv.: KLEINKROEGER WOLFGANG (DE); TENBRINK HANS-BERND (DE); ROBERTZ HEINZ (DE); MINKNER ULRICH (DE); STELLMACHER JENS (DE); WARNKE ERNST-PETER (DE). IPC C 22 C 37/04; C 22 C 37/08. Publ. 2002-07-25. 5. Патент DE 10037359. Heavily loaded spheroidal casting part cast from a base melt consists of crude iron, steel briquettes and recycled material, nickel, a cerium/silicon mixture, a bismuth/silicon mixture, manganese, phosphorus, and sulfar. Appl.: BABCOCK GIESEREI GMBH (DE). Inv.: BUCHMUELLER HORST (DE); KALLA GEORG (DE); WENZEL JENS (DE); FRESE THOMAS (DE); MINKNER ULRICH (DE); SCHULZ NORBERT (DE); WOLTERS DIETHER (DE); RICHTER BERNHARD (DE). IPC C 22 C 38/08. Publ. 2002-02-21. 6. ТУ 14-2Р-33 8-2000. Технические условия. Лигатура никель-магний-церий. Группа В51. 7. Поручиков Ю.П., Мысик Р.К., Титова А.Г, Фоминых Г.Д. Технология разливки меди с введением твердого металла в кристаллизатор/ Цветные металлы, 1986. №4. С.71-76. 8. А.с. СССР №1194894. Способ обработки металла легирующим компонентом при непрерывном литье заготовок / Ю.П.Поручиков, Р.К.Мысик, Ю.Н.Логинов и др. МКИ С 21 С 7/00, БИ №44, 30.11.85. 9. А.с. СССР №130155. Устройство для ввода легирующих компонентов в кристаллизатор при непрерывном литье. Ю.Н.Логинов, Р.К.Мысик, Ю.П.Поручиков и др. МКИ B 22 D 11/10, БИ №13, 07.04.87. 10. Смирягин А.П., Смирягина Н.А., Белова А.В. Промышленные цветные металлы и сплавы. Справочник. М.: Металлургия, 1974. 488 с.
Формула изобретения
1. Лигатура для модифицирования и легирования сплавов, содержащая 14-17% магния, 0,4-0,6% церия, остальное – никель и примеси и изготовленная в виде фрагментированных частиц сплава, отличающаяся тем, что размер частиц лигатуры составляет от 0,5 до 4 мм. 2. Лигатура по п.1, отличающаяся тем, что в примесях содержание углерода заключено в пределах от 0,001 до 0,1%.
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 13.05.2007
Извещение опубликовано: 27.07.2008 БИ: 21/2008
|
||||||||||||||||||||||||||