Патент на изобретение №2269768
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ОПРЕДЕЛЕНИЯ СРЕДНЕГО КОЭФФИЦИЕНТА ТЕПЛОПЕРЕДАЧИ КУЗОВА ТРАНСПОРТНОГО СРЕДСТВА
(57) Реферат:
Изобретение относится к испытаниям транспортных средств и может быть использовано для определения среднего коэффициента теплопередачи кузовов транспортных средств. Способ состоит в нагреве воздуха внутри кузова источником тепла, в момент включения которого начинают замер температур воздуха внутри и снаружи кузова и, продолжая нагрев, выполняют одновременные замеры температур воздуха внутри и снаружи кузова в течение минимального времени, необходимого для аппроксимации с заданной точностью изменения мгновенных значений перепада температур. Заканчивают замеры задолго до установления стационарного теплового режима внутри кузова, дважды аппроксимируют их полную и усеченную выборку уравнениями степенных функций типа где Н – среднегеометрическая теплопередающая поверхность; Р – мощность источника тепла; An, Вn, Aу, Bу – константы аппроксимирующих уравнений; n, у – индексы, соответствующие полному и усеченному рядам аппроксимируемых значений времени и перепадов температур. Технический результат заключается в снижении длительности и трудоемкости испытаний за счет упразднения процесса остывания воздуха в кузове. 1 табл.
Изобретение относится к испытаниям транспортных средств и может быть использовано для определения среднего коэффициента теплопередачи кузовов железнодорожных вагонов, автомобилей, фюзеляжей самолетов, грузовых помещений рефрижераторных судов, строительных конструкций и т.д. Наиболее распространенным является способ определения среднего коэффициента теплопередачи кузова транспортного средства, заключающийся в нагреве воздуха внутри кузова до установления стационарного температурного режима при помощи источника тепла известной постоянной мощности и последующем расчете коэффициента теплопередачи как отношения мощности источника тепла к площади теплопередающей поверхности кузова и установившейся в стационарном режиме разности температур воздуха внутри и снаружи кузова (см. “Методы и порядок проведения измерений и контроля изотермических свойств и эффективности оборудования для охлаждения и обогрева специальных транспортных средств”. Соглашение о международных перевозках скоропортящихся пищевых продуктов и о специальных транспортных средствах, предназначенных для этих перевозок, 1970 г. Женева). Недостатком этого способа является необходимость затрат значительного времени труда и энергии на нагрев кузова последовательно в нерегулярном и регулярном режиме для достижения и поддержания стационарного температурного режима. По указанному способу испытания могут продолжаться сутками, так как любой сбой температур ведет к увеличению длительности эксперимента. Наиболее близким по технической сущности к предлагаемому изобретению является способ определения среднего коэффициента теплопередачи кузова транспортного средства без достижения в нем установившегося режима температур воздуха, заключающийся в нагреве воздуха внутри кузова в нерегулярном режиме источником тепла известной постоянной мощности и одновременном измерении температур воздуха внутри и снаружи кузова в течение минимального времени, необходимого для аппроксимации в процессе нагревания хода изменения во времени разностей наружной и внутренней температур воздуха уравнением степенной функции, снижении мощности источника до известной величины, измерении температур воздуха снаружи и внутри кузова в течение минимального времени, необходимого для аппроксимации в процессе остывания хода изменения во времени разностей наружной и внутренней температур воздуха уравнением степенной функции и последующем расчете среднего коэффициента теплопередачи по найденным константам уравнений, аппроксимирующих процессы нагрева и остывания воздуха в кузове транспортного средства (А.с. №1730572, G 01 N 25/18, публ. 30.04.92, Бюл. №16). Недостатком известного способа является необходимость последовательной реализации примерно равных по длительности процессов нагрева и остывания воздуха в кузове вагона. Техническая задача – снижение длительности и трудоемкости испытаний за счет упразднения процесса остывания воздуха в кузове вагона. Техническая задача достигается тем, что в известном способе определения среднего коэффициента теплопередачи кузова транспортного средства, в котором осуществляют нагрев воздуха внутри кузова посредством источника тепла, замер мощности источника тепла, замер температур воздуха внутри и снаружи кузова и последующий расчет коэффициента теплопередачи, процесс замеров температур начинают в момент включения источника тепла, продолжая нагрев выполняют одновременные замеры температур воздуха внутри и снаружи кузова в течение минимального времени, необходимого для аппроксимации с заданной точностью изменения мгновенных значений перепада температур, заканчивают замеры задолго до установления стационарного теплового режима воздуха внутри кузова, дважды аппроксимируют их полную и усеченную выборку уравнениями степенных функций типа
где
А, В, С – константы аппроксимирующих уравнений, используя константы полученных уравнений, вычисляют коэффициент теплопередачи по формуле где Н – среднегеометрическая теплопередающая поверхность; Р – мощность источника тепла; An, Вn, Aу, Bу – константы аппроксимирующих уравнений; n, у – индексы, соответствующие полному и усеченному рядам аппроксимируемых значений времени и перепадов температур. Пояснение к предлагаемому способу. По известному способу определение искомого коэффициента теплопередачи кузова транспортного средства достигается за счет того, что процессы нагрева и остывания воздуха в кузове состоят каждый из двух стадий – нерегулярного и регулярного режима, отличающихся друг от друга характером изменения темпа перепада температур при нагреве или остывании. На регулярных участках изменение темпа перепада температур происходит в соответствии с известным дифференциальным уравнением теплового баланса вида где
d Р – мощность источника тепла; W – водяной эквивалент кузова; К – коэффициент теплопередачи кузова; Н – площадь теплопередающей поверхности кузова. В связи с тем, что W, К и Н являются физическими константами, уравнение (1) в координатах (d Вместе с тем, в известном способе установлено, что в начальный период нагрева и остывания вследствие наличия тепловой инерции кузова характер изменения d где А и В – постоянные коэффициенты. Переход от нерегулярного режима к регулярному при нагреве и остывании происходит в точках касания кривых (2) и прямых вида (1). Совместное решение уравнений нерегулярных участков нагрева и остывания вида (2) и касательных вида (1) к этим кривым, соответствующих стадиям регулярных режимов нагрева и остывания после ряда преобразований по известному способу, позволяет получить зависимость искомого среднего коэффициент теплопередачи К от параметров А и В уравнений нестационарных участков нагрева и остывания. Упразднение процесса остывания по предлагаемому способу достигается за счет того, что найдена возможность один и тот же процесс нагрева воздуха в кузове транспортного средства, соответствующий нагреву по известном способу, дважды аппроксимировать двумя разными уравнениями типа d Последовательность действий для реализации предлагаемого способа на примере рефрижераторного вагона следующая. Воздух во внутреннем объеме кузова вагона с известной среднегеометрической теплопередающей поверхностью Н (Н=200 м2) начинают нагревать при помощи источников тепла (электронагревателей) мощностью Р=6,73 кВт и через интервалы времени Этого количества замеров в данном случае достаточно для определения коэффициента теплопередачи с заданной точностью. Перепад температур Параметрам полного ряда присваивают индекс “n”, а параметрам усеченного ряда – индекс “у” и выполняют обе аппроксимации (см. табл.1).
Для этого вычисляют среднегеометрические разности температур для полного и усеченного рядов
где
Определяются значения коэффициентов Сn и Су по формулам Величины среднегеометрических перепадов температур Коэффициенты уравнения аппроксимации Bn, An и Bу, Aу определяются из выражений где Nn и Nу – соответственно число замеров для полного и усеченного рядов. Искомый средний коэффициент теплопередачи кузова вагона К определятся из выражения Таким образом, снижение времени, необходимого для определения среднего коэффициент теплопередачи, примерно в два раза за счет упразднения процесса остывания кузова с одной стороны приводит к соответствующему снижению эксплуатационных затрат, таких, как расходы на энергоносители, аренду помещений, техническое обслуживание и т.д., а с другой стороны соответственно увеличивает доходы за счет возрастания производительности тех специализированных помещений, в которых выполняются работы по определению искомого коэффициента.
Формула изобретения
Способ определения среднего коэффициента теплопередачи кузова транспортного средства, в котором осуществляют нагрев воздуха внутри кузова посредством источника тепла, замер мощности источника тепла, замер температур воздуха внутри и снаружи кузова и последующий расчет коэффициента теплопередачи, отличающийся тем, что в нем процесс замеров температур начинают в момент включения источника тепла, продолжая нагрев, выполняют одновременные замеры температур воздуха внутри и снаружи кузова в течение минимального времени, необходимого для аппроксимации с заданной точностью изменения мгновенных значений перепада температур, заканчивают замеры задолго до установления стационарного теплового режима внутри кузова, дважды аппроксимируют их полную и усеченную выборку уравнениями степенных функций типа
где
А, В, С – константы аппроксимирующих уравнений, используя константы полученных уравнений, вычисляют коэффициент теплопередачи по формуле где Н – среднегеометрическая теплопередающая поверхность; Р – мощность источника тепла; An, Вn, Aу, Bу – константы аппроксимирующих уравнений; n, у – индексы, соответствующие полному и усеченному рядам аппроксимируемых значений времени и перепадов температур.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||