Патент на изобретение №2266972
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА
(57) Реферат:
Изобретение относится к металлургии, а именно к прецизионным литейным сплавам с низким тепловым расширением, и может быть использовано в летательных аппаратах, в оптоэлектронной технике, лазерной технике в прецизионном приборостроении, в частности, для изготовления деталей, работающих в контакте с кварцем, кремнием, карбидом кремния и др. неметаллами. Литейный сплав на основе железа содержит, мас.%: никель 31,0-32,5, кобальт 9,4-11,0, молибден 0,4-0,6, редкоземельные элементы: церий, лантан, празеодим, неодим – в сумме 0,04-0,25, железо – остальное. Техническим результатом изобретения является снижение среднего температурного коэффициента линейного расширения в интервалах температур 20-400°С, 20-450°С, 20-500°С при сохранении уровня трещиноустойчивости и гомогенности, т.е. однофазной структуры сплава, в том числе до температуры минус 60°С. 5 табл.
Изобретение относится к металлургии, а именно к составам прецизионных литейных сплавов, обладающих низким тепловым расширением при повышенных температурах, и может быть использовано в летательных аппаратах, оптоэлектронной технике, лазерной технике для прецизионного приборостроения и в других областях, в частности, для изготовления деталей, работающих в контакте с неметаллами, например, кварцем, кремнием, карбидом кремния. Известна гамма прецизионных сплавов на основе железа, обладающих низким температурным коэффициентом линейного расширения (ТКЛР) в интервалах температур 20-400°С, 20-500°С. Эти российские и зарубежные сплавы на основе железа, содержащие 27,0-38,5% никеля и 1,5-24,0% кобальта. К ним относятся сплавы, например 29НК, 30НКД (ГОСТ 10994-74), Вакон 20 (Vacuumschmelze, ФРГ), SVR (Tohoku Metals Industries, Япония) [1, c.408]. Средний ТКЛР этих сплавов составляет в интервалах температур (×10-6 К-1):
Недостаток этих сплавов состоит в том, что они являются деформируемыми, а не литейными и из них нельзя из-за низкой трещиноустойчивости (склонности к образованию трещин при литье) изготавливать фасонные отливки. Известны прецизионные литейные сплавы на основе железа, обладающие достаточной трещиноустойчивостью для изготовления сложных фасонных отливок. Так, сплав по источнику [2] содержит мас.%: никель 32-33,5, кобальт 3,2-4,2, ниобий 0,4-0,8, редкоземельные элементы (церий, лантан, празеодим, неодим) в сумме 0,04-2,0, железо – остальное. К нему относится сплав 32НКБЛ. Сплав по источнику [3] содержит, мас.%: никель 31,5-33,0, кобальт 6,0-8,0, хром 0,1-0,25, ниобий 0,3-0,5, редкоземельные элементы (церий, лантан, празеодим, неодим) в сумме 0,05-0,25, железо – остальное. К нему относится сплав 32НКХБЛ. Эти сплавы имеют недостаточно низкий средний ТКЛР в интервалах температур 20-400°С, 20-450°С, 20-500°С. ТКЛР данных сплавов в вышеуказанных интервалах составляет по данным наших исследований (×10-6 К-1):
Наиболее близким к описываемому изобретению по совокупности существенных признаков является прецизионный литейный сплав [4] следующего состава, мас.%: никель 31,5-33,0, кобальт 8,1-9,3, ниобий 0,25-0,5, молибден 0,15-0,3, редкоземельные элементы (церий, лантан, празеодим, неодим) в сумме 0,04-0,25, железо – остальное. Этот сплав при одинаковом уровне трещиноустойчивости со сплавом 32НКХБЛ имеет существенно более низкий ТКЛР в интервалах температур 20-300°С и 20-350°С, чем данный сплав и сплав 32НКБЛ. Средний ТКЛР сплава-прототипа в интервалах температур 20-300°С и 20-350°С составляет (×10-6 К-1) 2,11-2,65 и 3,30-3,59. Однако ТКЛР данного сплава в интервалах температур 20-400°С, 20-450°С, 20-500°С является слишком высоким для использования в целом ряде ответственных изделий. Недостаточно низкий ТКЛР сплава объясняется потерей инварности из-за превышения эксплуатационными температурами точки (температуры) Кюри. Изобретение направлено на разработку литейного сплава, предназначенного для изготовления сложных, в том числе крупногабаритных фасонных отливок с низким тепловым расширением в широких температурных интервалах повышенных температур. Технический результат, который достигается изобретением, заключается в снижении ТКЛР сплава в интервалах температур 20-400°С, 20-450°С, 20-500°С при сохранении гомогенности структуры сплава для стабильности эксплуатационных характеристик и сохранения уровня трещиноустойчивости. Это достигается тем, что сплав содержит никель, кобальт, молибден, редкоземельные элементы и железо при следующем соотношении компонентов, мас.%: никель 31,0-32,5, кобальт 9,4-11,0, молибден 0,4-0,6, редкоземельные элементы (церий, лантан, празеодим, неодим) в сумме 0,04-0,25, железо – остальное. Увеличение содержания кобальта до 9,4-11,0% и снижение содержания никеля до 31,0-32,5% обеспечивают снижение ТКЛР сплава в интервалах температур 20-400°С, 20-450°С, 20-500°С по сравнению с прототипом. Увеличение содержания молибдена с 0,15-0,3% до 0,4-0,6% и исключения из состава ниобия связано с необходимостью обеспечения однофазной гомогенной структуры сплава при отрицательных климатических температурах (до – 60°С). При отрицательных температурах в железо-никель-кобальтовых инварных и суперинварных сплавах может выпадать Для обеспечения наиболее низкого ТКЛР при повышении содержания кобальта до 9,4-11,0% необходимо понизить содержание никеля. Но при этом повышается температура мартенситного превращения Мн, и ТКЛР сплава за счет выпадения мартенсита резко повышается. 0,6% молибдена понижают Мн сплава на 60°С в то время, как 0,6% ниобия понижают Мн сплава только на 30°С [5]. Таким образом, увеличение содержания молибдена до 0,4-0,6% при исключении ниобия позволяет уменьшить нижний и верхний пределы содержания никеля с 31,5-33,0% до 31,0-32,5% и тем самым снизить ТКЛР сплава при обеспечении гомогенной Кроме этого, нами установлено отсутствие ликвации молибдена к границам зерен (при его содержании до 0,6%), что гарантирует гомогенную структуру сплава (отсутствие мартенсита) в центре зерен, устраняет опасность повышения ТКЛР за счет выпадения мартенсита, а за счет отсутствия на границах зерен (структурных элементов) второй фазы обеспечивается при изготовлении сложных фасонных отливок трещиноустойчивость (горячеломкость) не ниже, чем в сплаве-прототипе. При снижении содержания молибдена в сплаве менее 0,4% (при отсутствии ниобия) снижается трещиноустойчивость сплава. При повышении содержания молибдена в сплаве более 0,6% молибден начинает ликвировать к границам зерен (структурных элементов) и в районе границ появляется вторая фаза, что отрицательно влияет на трещиноустойчивость сплава. Механизм влияния редкоземельных элементов (РЗМ) на обеспечение достаточной трещиноустойчивости сплава аналогичен имеющемуся в сплаве-прототипе. Химический состав сплавов приведен в табл.1, средний ТКЛР сплавов – в табл.2, трещиноустойчивость сплава и образцов – в табл.3, наличие второй фазы (мартенсита) после обработки холодом при температуре (-60°С) – в табл.4, наличие второй фазы на границах структурных элементов – в табл.5. Плавки проводили в высокочастотных индукционных плавильных печах марки ИСТ-016, емкостью до 160 кг. Футеровка печей кислая. Шихтовые материалы (низкоуглеродистое железо) подвергались дробеструйной обработке. Литейные отходы в плавках не использовались. Раскисление сплавов производили в печи ферромарганцем, ферросилицием, алюминием, в ковше редкоземельными элементами, вводимыми в виде мишметаллов. Отливки изготавливались методами литья в кокиль с песчаными стержнями, литья в сухие песчаные формы и центробежного литья (машины с горизонтальной осью вращения). ТКЛР сплавов определяли на кварцевых дилатометрах. Измерения проводили на двух-трех образцах для каждой плавки. Образцы для определения ТКЛР засасывались из ковша в кварцевые трубки. Образцы для определения второй фазы вырезали из толстой части отливки или из узлов, прилитых к толстой части отливки. Обработка холодом образцов производилась раствором спирта, охлажденного жидким азотом. Результаты, приведенные в табл.2, свидетельствуют о том, что ТКЛР ( Снижение среднего ТКЛР сплава в интервалах температур 20-400°С, 20-450°С, 20-500°С для заявляемого сплава определяется новым соотношением содержания в сплаве никеля, кобальта и железа. При этом более оптимальное соотношение никеля и кобальта достигается и увеличением содержания молибдена до 0,4-0,6%, при котором сплав может функционировать при и после отрицательных температурах (до – 60°С) без выпадения второй фазы (мартенсита). При ее выпадении ТКЛР сплава резко повышается во всех диапазонах температур. Кроме того, введение молибдена в количествах до 0,6% позволяет особенно эффективно устранить появление мартенсита, так как он выпадает в обедненных никелем центральных частях структурных элементов, а молибден при содержаниях до 0,6% в отличие от ниобия не ликвирует из этих частей к границам. Сплав с запредельными значениями содержаний Ni, Co, Мо и РЗМ (пл.1, 2 табл.2) обладает ТКЛР существенно более высоким, чем заявляемый сплав, а именно при занижении содержаний основных компонентов (пл.1) 5,22; 6,95; 7,7 (×10-6 К-1) в интервалах температур 20-400°С, 20-450°С, 20-500°С соответственно. При завышении содержания основных компонентов ТКЛР сплава также повышается и превышает аналогичные значения для заявляемого сплава, составляя (пл.2) 4,89; 5,90; 7,15 (×10-6 К-1) в интервалах температур 20-400°С, 20-450°С, 20-500°С соответственно. Необходимо отметить, что все образцы, представленные в табл.1, 2, проходили термическую обработку по следующему режиму: отжиг 850°С 1 час, охлаждение на воздухе. Это относится и к образцам сплава-прототипа [4]. Между тем образцы сплава-прототипа при разработке этого сплава проходили термообработку по режиму 850°С 1 час, закалка в воду. Данная термическая обработка дает снижение ТКЛР сплава по сравнению с отжигом на 0,3-0,5×10-6 К-1. Для сплавов, изделия из которых функционируют при температурах более 300-350°С закалка недопустима, так как ее эффект при этом снимается. Поэтому все образцы проходили отжиг. Данные по трещиноустойчивости (горячеломкости) заявляемого сплава, приведенные в табл.3, показывают, что трещиноустойчивость заявляемого сплава соответствует трещиноустойчивости сплава-прототипа и достаточна для изготовления сложных, крупногабаритных деталей методами фасонного литья. В табл.4 представлены данные по определению наличия второй фазы (мартенсита) после обработки образцов холодом (- 60°С). Данные этой таблицы свидетельствуют о том, что Представленные в табл.5 данные по наличию второй фазы на границах структурных элементов, полученные на спектральных анализаторах и оптических микроскопах, показывают, что заявляемый химический состав по сравнению со сплавом-прототипом обеспечивает аналогичную чистоту границ структурных элементов от вторых фаз, а следовательно, гомогенность сплава, стабильность эксплуатационных характеристик (размерная стабильность во времени, минимизация напряжений при изменении температуры и т.д.) и отсутствие ухудшения механических характеристик.
Таким образом, разработан прецизионный сплав на основе железа с ТКЛР существенно меньшим по сравнению со сплавом-прототипом для интервалов температур 20-400°С, 20-450°С, 20-500°С. Использованные источники 1. Прецизионные сплавы. Справочник. Под ред. Б.В.Молотилова, М.: Металлургия, 1983. 2. Сплав на основе железа, патент РФ №1096956, С 22 С 38/10, 1998. 3. Сплав на основе железа, патент РФ №2183228, С 22 С 38/52, 2002. 4. Сплав на основе железа, патент РФ №2243281, С 22 С 38/12, 2004. 5. Захаров А.И. и др. Влияние легирования на тепловое расширение сплава супер-инвар. Металловедение и термическая обработка, №6, 1972, с.62-64.
Формула изобретения
Литейный сплав на основе железа, содержащий никель, кобальт, молибден, редкоземельные элементы и железо, отличающийся тем, что он содержит указанные компоненты при следующем соотношении, мас.%:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||