Патент на изобретение №2265057
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ИНДИКАЦИИ БИОЦИДНОЙ АКТИВНОСТИ ПЕРЕКИСНЫХ ДЕЗИНФИЦИРУЮЩИХ РАСТВОРОВ К БОТУЛИНИЧЕСКОМУ НЕЙРОТОКСИНУ
(57) Реферат:
Изобретение относится к области биотехнологии, конкретно к способам индикации биоцидной активности перекисных дезинфицирующих растворов к токсинам микробного происхождения и может быть использовано для индикации биоцидной активности перекисных дезинфицирующих растворов к ботулиническому нейротоксину. Способ заключается в приготовлении препаратов глобулярных белковых комплексов класса С, инициирующих льдообразование переохлажденной воды, которые продуцируются микроорганизмами родов Erwinia и Pseudomonas, воздействии дезинфицирующей композиции на приготовленные препараты и экспозиции. Эффективность дезинфектанта оценивают по сохранению специфических свойств белков после дезинфекционной обработки инструментальным криоскопическим микрокапельным методом. Способ позволяет безопасно, эффективно и в короткие сроки оценить биоцидную активность перекисных дезинфицирующих растворов по отношению к ботулиническому нейротоксину. 4 табл.
Изобретение относится к способам определения дезинфицирующей активности перекисных растворов в отношении микробных токсинов белковой природы и может быть использовано в биотехнологии, санитарной, медицинской и прикладной микробиологии. Определение биоцидной активности дезинфицирующих средств предполагает воздействие ими на тест-объект с последующей оценкой его биологической активности до и после воздействия. Применительно к ботулиническому нейротоксину определение биологической активности заключается в количественном определении белка по его токсическим свойствам. Имеется большое количество методов определения активности ботулинических токсинов, среди которых необходимо отметить индикацию ботулинических токсинов по реакции задержки фагоцитоза и восстановления его в присутствии специфических сывороток (Матвеев К.И. Ботулизм. – М., 1959, – 407 с.). Однако метод не нашел широкого признания ввиду ориентировочности получаемых результатов. Малоупотребительными, ввиду недостаточной чувствительности, остаются и обычные серологические методы, основанные на реакции между токсином и соответствующими антителами. В настоящее время разработаны многочисленные варианты иммуноферментных твердофазных или гомогенных методов анализа. Они основаны на специфической фиксации определенных антител или антигенов на нерастворимой основе с последующим тестированием связанного компонента с помощью индикационной системы – антитела (или антигена), ковалентно связанного с ферментом (Егоров А.М., Осипов А.П., Дзантиев Б.Б., Гаврилова Е.М. Теория и практика иммуноферментного анализа. – М., 1991, – 286 с.). Однако реализация иммуноферментного метода требует индивидуальной специфичности конъюгатов для каждого типа антигенов и высокой степени их очистки, что снижает возможность их использования в широкой практике. Известен также способ определения активности токсинов по уменьшению люминесценции бактерий после воздействия токсинами. Способ информативный, в некоторой степени инструментальный, но является недостаточно точным вследствие использования биологического компонента (Способ определения активности бактериальных токсинов, патент RU 2075081. Поляков В.М., Текутьев С.И., Андрусенко И.Т. и др., 1997). В качестве ближайшего аналога определения биоцидной активности перекисных дезинфицирующих растворов к токсинам микробного происхождения выбран суспензионный способ, включающий “Способ” определения эффективности дезинфицирующих средств в отношении токсинов титрованием на лабораторных животных” (Лабинская А.С. Микробиология с техникой микробиологических исследований. – М.: Медицина, 1978, С.258-260). 50 в мл-1 с определением среднеквадратичного отклонения. Вычисляют так же удельную активность пробы ЛД50 в мл-1 белка. Активность пробы (ЛД50) рассчитывают по методу Кербера в модификации Ашмарина (Ашмарин И.П., Воробьев А.А. Статистические методы в микробиологических исследованиях – Л.: Медгиз, 1962). Продолжительность анализа по биологической пробе на лабораторных животных составляет от 7 до 8 суток. Общим с заявленным способом является этап приготовления из исследуемого белкового препарата предварительных разведении необходимой кратности, режимы и способы дезинфекции, отбор проб для анализа. К недостаткам данного метода следует отнести трудоемкость и сложность определения биоцидной активности дезинфицирующих перекисных растворов по биологической пробе на лабораторных животных, длительность и низкую точность определения вследствие использования не стандартизованных по чувствительности лабораторных животных. Задачей изобретения является разработка способа, обеспечивающего нетрудоемкое, экспрессное определение эффективности дезинфектантов в отношении ботулинического нейротоксина, представляющего собой глобулярный белковый комплекс, сформированный из нескольких субъединиц, на этапах разработки прописей дезинфицирующих композиций, режимов и технических средств их применения. Поставленная задача решается благодаря тому, что в способа индикации биоцидной активности перекисных дезинфицирующих растворов предусмотрено использование: в качестве объекта тестового воздействия, препаратов бактериальных белков, инициирующих льдообразование (БИЛ), регистрация биологической активности которых осуществляется по наличию в пробе центров нуклеации (ЦН) переохлажденной воды, формируемых белками этого типа; методики капельного замораживания для количественного обнаружения ЦН в пробах, сущность которой заключается в подсчете относительного числа кристаллизующихся микрокапель серийных разведении исследуемых проб при определенной температуре переохлаждения и использовании известной зависимости концентрации ЦН от доли замерзающих микрокапель, подчиняющейся распределению Пуассона; рациональной температуры анализа, находящейся в интервале от минус 7°С до минус 11°С, т.к. при этой температура чистая вода и разбавленные растворы солей, не содержащие гетерогенных ядер нуклеации, в микрокаплях сохраняются в переохлажденном состоянии продолжительное время; миникриостата с регулируемой температурой (производства ОАО “Био-машприбор”, г. Йошкар-Ола), сконструированного на основе элементов “Пельтье”, обеспечивающих охлаждение и термостабилизацию рабочей поверхности с точностью 0,2°С в интервале температур от минус 1°С до минус 13°С; акт) и предэкспоненциального множителя (А) в уравнении Аррениуса (k=Аехр(-Еакт/RT), характеризующего термоустойчивость микроорганизмов. Так энергия активации и предэкспоненциальный множитель для Clostridium botulinum типа А равны 72 ккал×моль-1 и 2×1039 с-1, а для Pseudomonas fluorescens 69 ккал×моль-1 и 3×1043 с-1 соответственно (Мунблит В.Я., Тальрозе В.Л., Трофимов В.И. Термоинактивация микроорганизмов. – М.: Наука, 1985, – 247 с.). Способ включает следующие этапы: приготовление тест-объекта из белкового препарата; проведение инактивации препарата перекисными дезинфектантами; определение содержания ЦН в тест-объекте до и после воздействия дезинфицирующего раствора криоскопическим микрокапельным методом; обработка результатов. Способ выполняется следующим образом. Для получения тест-препарата выращивают культуру продуцента, из которой выделяют БИЛ. Выращивание микробов продуцентов осуществляется на поверхности плотной питательной среды, на основе ферментативного гидролизата мяса, содержащей аминный азот в количестве (110±10) мг %, имеющей концентрацию водородных ионов (7,2±0,2) ед. рН. Получение микробных культур производится при температуре (24±4)°С в течение 3 суток с последующим смывом колоний физиологическим раствором хлористого натрия. Выделение БИЛ осуществляют путем разрушения клеток суспензии микроорганизмов встряхиванием со стеклянными бусами или обработкой ультразвуком. БИЛ выделяют из культуральной жидкости методом солевого осаждения в присутствии сульфата аммония при рН среды 3,5…5,5 ед. рН с последующим центрифугированием. На основе полученной белковой пасты готовят тест-препарат, соответствующий раствору ботулинического нейротоксина по содержанию белка, минеральных солей и кислотности. Инактивацию белкового препарата исследуемыми дезинфицирующими растворами осуществляют суспензионным методом при соотношении препарата и дезинфицирующего средства 1:9 и экспозиции от 5 до 30 мин с периодическим встряхиванием. Для регистрации ЦН в пробах проводят следующие операции: по описанию, прилагаемому к криостату, подготавливают прибор к работе. Устанавливают рабочую температуру минус 7°С. Разводящую жидкость – фосфатный буфер готовят на основе растворов солей однозамещенного и двузамещенного фосфорнокислого калия и дистиллированной воды. Концентрация водородных ионов (рН) должна находиться в пределах 7,3…7,6 ед. рН. Приготовленный буфер стерилизуется при 120°С в течение 30 минут. Стерильный буфер проверяют на наличие абиогенных центров нуклеации. Для этого буфер разливают в стерильные пробирки по 4…10 мл и замораживают в криостате при температуре минус (7…9)°С в течение 5 мин. Замерзшие при этой температуре пробирки отбраковывают. Приготовление парафинированных кювет осуществляют из алюминиевой фольги и переплавленного парафина, растворенного в ксилоле или хлороформе в концентрации 3%. Кюветы готовят в виде круга диаметром 8…10 см с загнутыми краями и высотой бортов 5…10 мм. Раствор парафина наносится на поверхность кюветы с избытком. Излишек раствора сливают. Кювету подсушивают в течение 2…3 минут над пламенем спиртовки для испарения растворителя. Стерильные мерные пробирки в количестве, необходимом для выполнения требуемых десятикратных разведений, заполняют 4,5 см3 фосфатного буфера. Исследуемую пробу тщательно перемешивают и 0.5 см3 вносят в первую пробирку с фосфатным буфером. Дальнейшие разведения осуществляют десятикратным шагом. Анализу подвергают исходную пробу и все 5…8 десятикратных разведений. Микропипеткой наносят на поверхность алюминиевой парафинированной кюветы по 20…40 капель (объемом 0,01 см3) (контролей фосфатного буфера и исследуемого дезинфицирующего раствора) и каждого анализируемого разведения. Кюветы устанавливают в криостат и визуально определяют количество замерзших капель в каждой кювете через три минуты с момента начала кристаллизации. Замерзание капель регистрируют по их помутнению. Изменяют температуру охлаждающей поверхности криостата и через 3 мин повторяют подсчет числа замерзших микрокапель. При расчете концентрации центров нуклеации используют кюветы, в которых отмечено замерзание части нанесенных капель. Анализ считается зачетным, если в контролях (фосфатном буфере и исследуемом дезинфицирующем растворе) ЦН при выбранной температуре не регистрируются. Расчет концентрации ЦН в пробах ведут следующим порядком. Для каждого разведения пробы (i) по формулам 1 и 2 рассчитывают долю замерзших капель – эффект кристаллизации (fi) и соответствующую этому эффекту концентрацию центров нуклеации (Сfi). где: fi – эффект кристаллизации, доля; Сfi – концентрация центров нуклеации в исследуемой жидкости, ц.н. см-3; Noi – общее количество зачетных капель исследуемого разведения на данной кювете; N3i – число замерзших капель исследуемого разведения на данной кювете; d – степень разведения; V – объем капли на кювете (0,01 см3). На основе полученных значений методом наименьших квадратов рассчитывают концентрацию центров нуклеации, соответствующую 50 – процентному эффекту кристаллизации. Статистическую обработку результатов параллельных определений выполняют в соответствии с общепринятыми нормами. Наличие причинно-следственной связи между совокупностью существенных признаков заявляемого объекта и достигаемыми техническими результатами показано в таблице 1.
Предлагаемый способ индикации биоцидной активности перекисных дезинфицирующих растворов в отношении микробных токсинов имеет следующие преимущества перед прототипом: сокращается продолжительность регистрации биоцидного эффекта дезраствора на льдообразующие белки, являющиеся биологическим имитатором ботулинического нейротоксина; исключается опасность для персонала, выполняющего работы по проведению дезинфицирующих мероприятий и регистрации результатов; повышается точность определения эффективности проводимой дезинфекции за счет исключения еще одного биологического фактора – использования лабораторных животных для определения остаточной токсичности и полноты дезинфекционных мероприятий; существенно снижаются затраты на проведение исследований за счет исключения работ, требующих специальных мер защиты (зонированных лабораторий и вивариев, СИЗ кожных покровов и органов дыхания, специальной подготовки персонала и т.п.); повышается производительность при использовании инструментального метода регистрации биоцидного эффекта перекисных дезинфектантов по активности биологических центров нуклеации. Возможность осуществления предлагаемого способа показана на следующих примерах. Пример 1. Оценка деструктивного действия 5%-ного раствора перекиси водорода на БИЛ бактерий Erwinia herbicola произведена в динамике при температурах регистрации эффекта кристаллизации минус 7°С и минус 11°С суспензионным методом.
Из представленных данных следует, что простой раствор перекиси водорода обладает некоторой деструктивной активностью в отношении изучаемых белков. Более крупные и лабильные белковые комплексы, регистрируемые при температуре минус 7°С, инактивируются за 30 мин. Стабильные белковые комплексы, регистрируемые при температуре минус 11°С, полностью не инактивируются. Остаточная их концентрация после 30-минутной экспозиции свидетельствует о том, что полней деструкции белков не наступает. Пример 2. Оценка деструктивного действия активированного муравьиной кислотой раствора перекиси водорода на белки Erwinia herbicola штамм №1211 в тех же условиях, что и в примере 1.
Примечание. Состав дезинфицирующего раствора: перекиси водорода 5%, муравьиная кислота 1%, сульфонол 0,3%. Полученные результаты свидетельствуют о том, что деструктивная активность активированного раствора перекиси водорода существенно выше чем у ее простого раствора. Однако достижение полной деструкции белков достигается только после 15-минутной экспозиции, что свидетельствует о некоторой ненадежности используемого дезсредства для этих целей. Пример 3. Оценка деструктивного действия 10%-ного раствора перекиси водорода с 35%-ным раствором этилового спирта на белки Erwinia sp. №16. Условия проведения опыта аналогичны примеру №1. Воздействие спиртово-перекисного раствора испытанной концентрации вызывает полную деструкцию белков Erwinia herbicola штамм №1211 уже после 5-минутной экспозиции, что свидетельствует о получении высокого биоцидного эффекта действия испытанного раствора.
Адекватность использования белков инициирующих льдообразование в качестве модели ботулинического нейротоксина для экспрессного определения эффективности дезинфектантов обусловлена результатами экспериментальных исследований их действия на нейротоксин. Исследования эффективности дезинфектантов на основе перекиси водорода показали, что полная инактивация ботулотоксина наблюдается в интервале от 5 до 30 минут. При этом установлено, что максимальную биоцидность проявляет 10%-ный раствор перекиси водорода с 35%-ным раствором этилового спирта, минимальную – раствор перекиси водорода, а раствор перекиси водорода, активированный муравьиной кислотой с добавлением сульфонола, занимает промежуточное положение. Эти результаты полностью согласуются с экспериментальными данными, полученными с использованием льдообразующих белков бактерий Erwinia herbicola штамм №1211 (таблицы 2, 3 и 4). Также следует отметить, что действующая нормативная документация (Санитарно-эпидемиологические правила. Безопасность работы с микроорганизмами 1-11 групп патогенности (опасности) – СП – 1.3.1285 – 03) предписывает для инактивации токсинов микробного происхождения использование дезинфицирующих растворов на основе перекиси водорода.
Формула изобретения
Способ индикации биоцидной активности перекисных дезинфицирующих растворов к ботулиническому нейротоксину, заключающийся в приготовлении препаратов глобулярных белков бактериальной природы, воздействии дезинфицирующей композиции на приготовленные препараты, экспозиции и оценке эффективности дезинфектанта по сохранению специфических свойств белков после дезинфекционной обработки, отличающийся тем, что в качестве препарата глобулярных белков используются белковые комплексы класса С, инициирующие льдообразование переохлажденной воды, продуцируемые микроорганизмами родов Erwinia и Pseudomonas, а оценка эффективности дезинфицирующих растворов производится инструментальным криоскопическим микрокапельным методом.
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 21.11.2007
Извещение опубликовано: 10.07.2009 БИ: 19/2009
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||