Патент на изобретение №2264375
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) НОВЫЕ СМЕСИ ПЕРФТОР-, АЛЬФА-ХЛОРПЕРФТОР- И АЛЬФА, ОМЕГА-ДИХЛОРПЕРФТОРАЛКАНОВ, СПОСОБ ПОЛУЧЕНИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ
(57) Реферат:
Изобретение относится к области органической химии, а именно к новым смесям перфтор-,
Изобретение относится к области органической химии, а именно к новым смесям перфтор-, Порошки-ускорители являются самым прогрессивным смазочным материалом для обработки пластиковых лыж с целью придания им высоких скоростных и скользящих свойств. Решающим показателем порошков-ускорителей является их гидрофобность. Такими особенностями порошки-ускорители обладают благодаря их фторсодержащим составляющим. В настоящее время ведущие производители смазочных материалов для лыжного спорта широко используют при создании порошков-ускорителей для пластиковых лыж индивидуальные перфторалканы, перфторалканы в смеси с полиэтиленовыми восками и перфторалканы в смеси с полиэтиленовыми восками и фторсодержащими жидкостями (полиэфиры, полиэфироспирты и т.д.). Состав порошка-ускорителя определяет его способ нанесения на пластиковую поверхность (оплавление, аэрозольное разбрызгивание и др.). Так, например, для приготовления суспензии порошков-ускорителей используют индивидуальные перфторалканы С12F26, C16F34, C18F38, которые при нагревании растворяют в перфторполиэфиродиолах (торговое название «Fomblin Z» или «Fomblin HT55»). После охлаждения образуется устойчивая суспензия порошка-ускорителя, обладающая высокой гидрофобностью, которая может быть нанесена на пластиковую поверхность лыж [ЕР 1029905 A1, Int. Cl.7 Use of fluorinated solvents for applications of fluorinated on skis / C.Gaggini.- №99811178.5; заявл.20.12.98; Опубл.23.08.2000; Приоритет 18.02.99]. Аналогичная технология производства порошков-ускорителей приводится в другом литературном источнике [USP 5114482, Int. Cl.5 C 08 L 91/06; C 09 D 101/60. Ski wax for use with sintered base snow skis / T.J.Hertel. -№487424; заявл.02.05.90; Опубл.19.05.92]. Кроме вышеуказанных веществ в общую композицию добавляется обычный (нефторированный) воск для повышения износоустойчивости порошка-ускорителя. Последним достижением профессиональных фирм-производителей порошков-ускорителей для пластиковых лыж является использование частично фторированных алканов, имеющих в своих молекулах углеводородные и перфторированные фрагменты. В одном из источников [USP 5423994, Int. Cl.6 С 10 М 139/00; С 10 М 111/04; А 63 С 5/00; C 08 L 91/06. Ski lubricant comprising a hydrocarbon compound containing a perfluoro segment / E. Traverso, A. Rinaldi. – №38123; заявл.26.03.93; Опубл.13.06.95] запатентованы соединения общей формулы CF3-СnF2n-СmН2m-СН3, также успешно использующиеся для производства современных смазочных материалов. Имея углеводородные и перфторированные части, эта группа соединений обладает одновременно высокой гидрофобностью и рабочей стабильностью на длинных дистанциях. Синтез частично фторированных алканов обычно протекает в две стадии и включает в себя присоединение перфторалкилиодида (RF Однако стоит отметить, что на отечественном рынке на сегодняшний момент такие продукты органического синтеза, как перфторалкилиодиды (RFI), практически отсутствуют. В связи с этим перфторалканы в качестве составляющих для получения порошков-ускорителей являются более доступными. Целью настоящего изобретения является разработка способа получения новых смесей порошков-ускорителей для пластиковых лыж на базе отечественного сырья. Среди наиболее употребительных способов получения перфторалканов известны следующие методы их синтеза: прямое фторирование углеводородов элементным фтором (F2), электрохимическое фторирование углеводородов в среде фтористого водорода (HF), электрофильное фторирование углеводородов под действием трехфтористого кобальта (CoF3) и пятифтористой сурьмы (SbF5 Все эти методы синтеза сопряжены со значительными трудностями при их осуществлении: при использовании элементного фтора (F2) и фтористого водорода (HF) необходимы как соблюдение техники безопасности при работе с высокотоксичными продуктами, так и наличие специальной аппаратуры; применение фторидов кобальта и сурьмы также требует специальной техники и регенерации фторирующих агентов. Реакции гомо- и кросс-сочетания протекают в инертной атмосфере с использованием дорогостоящих катализаторов – соединений палладия. Наиболее удобным методом получения перфторалканов является процесс окислительного декарбоксилирования перфторкарбоновых кислот под действием солей переходных металлов и персульфатов. 2S2O8, 95°С, 40-50 мин.) (прототип). В качестве исходных кислот для получения из них калийных солей в работе использовали перфтормасляную, перфторвалериановую и перфторэнантовую кислоты. Схематично процесс окислительного декарбоксилирования представлен на схеме 2. Результат реакции – перфторалканы с удвоенным количеством атомов углерода и фтора в общей цепи: С6F14 (62.5%, т. кип.57-59°С), C8F18 (90.6%, т. кип. 104-107°С), С12F26 (99.0%, т. пл. 69-71°С). К недостаткам данного способа получения можно отнести следующее: 1. проведение реакции в инертной атмосфере аргона (продувка реакционной массы в течение 15-20 мин); 2. не обоснован избыточный расход персульфата калия (K2S2O8): на 5 ммоль перфторэнантовой кислоты берут 6 ммоль персульфата калия. В патенте [USP 6019548, Int. Cl.7 B 09 B 1/00; B 01 D 17/06. Chemical oxidation of volatile organic compounds / G.E.Hoag, P.V.Chheda, B.A.Woody, G.M.Dobbs. – №09/073049; заявл.05.05.98; Опубл.01.02.2000] отмечается, что при нагревании происходит распад персульфат-иона на два ион-радикала: S2O8 2- 3. среди синтезированных соединений лишь одно из трех – С12F26 – может быть использовано в качестве порошка-ускорителя; остальные продукты (С6F14 и C8F18) является жидкостями. На сегодняшний день наиболее доступными перфторкарбоновыми кислотами на отечественном рынке химреактивов являются перфторэнантовая (С6F13СООН), перфторпеларгоновая (C8F17COOH), Продуктами окислительного декарбоксилирования индивидуальных перфторэнантовой и перфторпеларгоновой кислот являются известные перфторалканы, применяемые в качестве порошков-ускорителей: С12F26 и С16F34. Отличительными признаками настоящего изобретения является введение в реакцию окислительного декарбоксилирования не индивидуальных перфторкарбоновых кислот, а их смесей. При этом для получения порошков-ускорителей в процесс окислительного декарбоксилирования вводится две кислоты в соотношении 1:1 (по молям). Реакция проводится в открытой системе в присутствии персульфата калия и температуре 90-95°С. В результате такого взаимодействия конечным продуктом реакции является равновесная смесь трех возможных продуктов -перфтор-, Преимуществом новых смесей порошков-ускорителей и способа их получения являются следующие особенности: 1. процесс окислительного декарбоксилирования солей перфтор- и 2. существенно снижен расход персульфата калия (K2S2O8): на 1 моль / экв. смеси кислот требуется 0.6 моль / экв. персульфата калия (по реакции необходимо 0.5 моль / экв. + 20% избытка); 3. все синтезированные смеси порошков-ускорителей являются твердыми веществами, температуры плавления которых значительно ниже индивидуальных перфтор-, Аналогичный способ нанесения на поверхность пластиковых лыж смеси перфторалканов С14F30 и С16F34 (соотношение 1:1, т. пл. 110°С) и смеси С16F34, C18F38 и C20F42 (соотношение не указано, т. пл. 120°С) приведен в патенте [ЕР 0421303 А2, Int. Cl.5 C09G 3/00. Lubricant for skis / Т. Yasuyuki, Т. Isao, M. Takuo, 0. Sachio, Y. Masaru. – №90118706.2; заявл.28.09.90; Опубл.10.04.91]. В табл.2 (с.7) данного источника также указывается, что средняя скорость, развиваемая лыжником на обработанных этими порошками пластиковых лыжах, достигает 78.02 и 76.42 км/ч соответственно. В качестве сравнения здесь же приведен пример использования коммерчески доступных лыжных смазок на основе углеводородов (табл.1, т. пл. 55°С), средняя скорость лыжника при этом 75.88 км/ч (табл.2). Сравнение скоростных параметров ярко показывает преимущество использования фторсодержащих смазочных материалов перед углеводородными (парафиновыми). Предлагаемые в настоящем изобретении смеси фторсодержащих алканов могут использоваться как самостоятельные порошки-ускорители, так и в составе других перспективных смазочных материалов для лыжных видов спорта. Так, например, в патенте [USP 6284715, Int. Cl.7 С 10 М 105/52. Use of fluorinated solvents for application of fluorinated waxes on skis / G. P. Gambaretto. – №09/500795; заявл.10.02.2000; Опубл.04.09.2001] указывается на применение смеси фторалканов C12F26 (22%), С14F30 (37%), С16F34 (25%), C18F38 (12%) и C20F42 (4%) (т. пл. 97-98°С, пример 5) в составе аэрозоля (спрея) для обработки поверхности лыж. Вторым компонентом таких смазок является простой перфторполиэфир (торговое название «Fomblin HT55»), соотношение смеси перфторалканов и Fomblin HT55 равно 1:7 по массе. В целях установления некоторых рабочих характеристик полученные в настоящем изобретении смеси фторалканов были нанесены на беговые пластиковые лыжи спортсмена-гонщика, который использовал предложенные обработанные лыжи сначала на дистанции 5, а потом – 10 км. Смеси фторалканов наносились на лыжи методом оплавления, результаты измерений рабочих характеристик суммированы в табл. 4. Метод нанесения смесей фторалканов (оплавление): нанести тонкий, ровный слой порошка (смеси фторалканов) на скользящую поверхность пластиковых лыж, тщательно распределить по всей скользящей поверхности. Прогреть утюг на 10-15 ° выше, чем т. пл. используемой смеси фторалканов. За один проход утюгом по поверхности лыжи оплавить порошок. Движение утюга должно быть равномерно-спокойным. После охлаждения лыж поверхность с оплавленным порошком следует обработать щетками: сначала из натурального конского волоса, затем – мягкой нейлоновой. Сравнительный анализ табл. 4 показывает, что синтезированные смеси порошков-ускорителей не уступают по скоростных характеристикам порошкам-ускорителям из патента [ЕР 0421303 А2, Int. Cl.5 C09G 3/00. Lubricant for skis / Т. Yasuyuki, Т. Isao, M. Takuo, 0. Sachio, Y. Masam. – №90118706.2; заявл.28.09.90; Опубл.10.04.91]. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ ИК спектры зарегистрированы на спектрофотометре «Specord 75-IR». Состав полученных смесей определялся на газожидкостном хроматографе «Shimadzu GC-17A» с системой обработки данных «Chromatopac C-RGA» с пламенно-ионизационным детектором (кварцевая капиллярная колонка MDH-5S (SE-54) длиной 30 м с внутренним диаметром 0.2 мм, газ-носитель – азот). Ввод 10%-ных растворов в гексане синтезированных смесей осуществлялся при начальной температуре колонки 100°С с последующими выдержкой (3 мин) и программированием поднятия температуры до 280°С (10°С / мин), температура испарителя – 280°С, детектора – 300°С. ПРИМЕР 1. В трехгорлую круглодонную колбу объемом 6 л, снабженную механической мешалкой, обратным водным холодильником, термометром и помещенную на нагревающее устройство, вносят 1 л воды, 56.0 г (1 моль) КОН и перемешивают. Затем добавляют 182.0 г (0.5 моль) перфторэнантовой кислоты и 190.3 г (0.5 моль) ПРИМЕР 2. Аналогично из 56.0 г (1 моль) КОН, 182.0 г (0.5 моль) перфторэнантовой кислоты, 240.3 г (0.5 моль) ПРИМЕР 3. Аналогично из 56.0 г (1 моль) КОН, 232.0 г (0.5 моль) перфторпеларгоновой кислоты, 190.3 г (0.5 моль) ПРИМЕР 4. Аналогично из 56.0 г (1 моль) КОН, 232.0 г (0.5 моль) перфторпеларгоновой кислоты, 240.3 г (0.5 моль) ПРИМЕР 5. Аналогично из 56.0 г (1 моль) КОН, 190.3 г (0.5 моль) ПРИМЕР 6. В трехгорлую круглодонную колбу объемом 6 л, снабженную механической мешалкой, обратным водным холодильником, термометром и помещенную на нагревающее устройство, вносят 1 л воды, 56.0 г (1 моль) КОН и перемешивают. Затем добавляют 145.6 г (0.4 моль) перфторэнантовой кислоты и 228.3 г (0.6 моль) ПРИМЕР 7. Аналогично из 56.0 г (1 моль) КОН, 109.2 г (0.3 моль) перфторэнантовой кислоты, 336.4 г (0.7 моль) ПРИМЕР 8. Аналогично из 56.0 г (1 моль) КОН, 182.0 г (0.5 моль) перфторэнантовой кислоты, 240.3 г (0.5 моль) ПРИМЕР 9. Аналогично из 56.0 г (1 моль) КОН, 182.0 г (0.5 моль) перфторэнантовой кислоты, 240.3 г (0.5 моль)
Формула изобретения
1. Смеси перфтор-, 2. Способ получения смесей перфтор-, 3. Смеси перфтор-,
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||