Патент на изобретение №2263067
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ИЗВЛЕЧЕНИЯ ПЕРХЛОРАТ-ИОНА ИЗ ВОДНОГО РАСТВОРА
(57) Реферат:
Изобретение относится к химической промышленности и может быть использовано для извлечения перхлорат-иона из высококонцентрированного технологического раствора сложного солевого состава. Раствор, содержащий перхлорат-ион, пропускают через высокоосновной анионит в нитратной форме. Регенерацию анионита осуществляют в водном растворе нитрата щелочного или щелочно-земельного металла с концентрацией от 1 масс.% до концентрации насыщения при температуре 0-60°С. После регенерации анионит промывают водой для повторного использования. При отсутствии промышленно выпускаемого анионита в нитратной форме он может быть получен выдержкой в водном растворе нитрата щелочного металла высокоосновного анионита в хлоридной или основной (ОН–) форме. Изобретение позволяет повысить эффективность сорбционного извлечения перхлорат-иона. 8 з.п. ф-лы, 4 табл.
Изобретение относится к химической промышленности, а более конкретно для извлечения перхлорат-иона из высококонцентрированного технологического раствора, имеющего сложный нитратно-хлоридно-сульфатно-иодатный состав. В настоящее время известно использование промышленно выпускаемых сильноосновных анионообменных смол на полистирольной и полиакриловой основе в технологиях очистки природных подземных и наземных (ground water and surface water) вод от примесей перхлорат-ионов. Так, известен способ извлечения перхлорат-иона из водного раствора (см. Batista J.R. et al. – The removal of perchlorate from waters using ion-exchange resins. – “Perchlorate in the Environment”. – N.Y., 2000, p.p. 135-145) путем пропускания его через стандартный промышленный высокоосновный анионит в хлоридной форме производства фирм Sybron Chemicals и Purolite и последующей регенерации смолы в водном растворе хлористого натрия. Недостатком известного способа является низкая селективность извлечения перхлорат-иона из высококонцентрированного раствора сложного солевого состава. Известен способ извлечения перхлорат-иона из водного раствора (см. патент США №6407143, МПК C 08 J 005/20, опубликован 18.06.2002), включающий пропускание раствора через высокоосновный анионит в хлоридной форме и его последующую регенерацию в составе, включающем жидкий сверхкритический диоксид углерода и поверхностно-активный компонент, содержащий хлориды четвертичных аммонийных оснований (quaternary ammonium chloride surfactants). Известный способ сложен в осуществлении и к тому же имеет недостаточную эффективность извлечения перхлорат-иона из высоко концентрированного раствора сложного солевого состава. Известен способ извлечения перхлорат-иона из водного раствора (см. патент США №6448299, МПК B 01 J 49/00, опубликован 10.09.2002), включающий пропускание раствора через специально изготовленный высокоосновный анионит в хлоридной форме и его последующую регенерацию смесью FeCl3 и HCl в водно-спиртовом растворе. Известный способ требует применения сложной и затратной технологии для регенерации смолы, что ограничивает область его использования. Наиболее близким по технической сущности и совокупности существенных признаков к заявляемому изобретению является способ извлечения перхлорат-иона из водного раствора (см. патент США №6066257, МПК C 02 F 1/58, опубликован 23.05.2000), включающий пропускание раствора через высокоосновный анионит в хлоридной (Cl–) форме и его последующую регенерацию солями щелочных металлов, главным образом, хлористым натрием (NaCl). Известный способ-прототип показал недостаточную эффективность при извлечении перхлорат-иона из высококонцентрированного раствора сложного солевого состава. Задачей изобретения являлась создание такого способа извлечения перхлорат-иона из водного раствора, который бы позволял с высокой степенью эффективности извлекать перхлорат-ион из высококонцентрированного раствора сложного солевого состава. Поставленная задача решается тем, что в способе извлечения перхлорат-иона из водного раствора, включающем пропускание раствора через высокоосновный анионит и последующую регенерацию упомянутого анионита в водном растворе соли металла, в качестве анионита используют анионит в нитратной форме, а его регенерацию осуществляют в водном растворе нитрата щелочного или щелочноземельного металла при температуре 0-60°С. Прошедший регенерацию анионит может быть промыт водой и вновь использован для извлечения перхлорат-иона. При отсутствии промышленно выпускаемого анионита в нитратной форме он может быть получен выдержкой в водном растворе нитрата щелочного металла высокоосновного анионита в хлоридной форме или высокоосновного анионита в основной (ОН–) форме. В качестве нитрата щелочного металла преимущественно используется нитрат калия или нитрат натрия. В качестве нитрата щелочноземельного металла целесообразно использовать нитрат магния. Регенерацию анионита в нитратной форме преимущественно осуществляют при температуре 0-45°С. Регенерацию анионита в нитратной форме осуществляют в упомянутом водном растворе нитрата щелочного или щелочноземельного металла с концентрацией от 1 масс.% до концентрации насыщения при температуре регенерации. Проведение регенерации анионита при температуре ниже 0°С приводит к снижению скорости процессов сорбции и регенерации и последующему замерзанию водного раствора нитрата щелочного или щелочноземельного металла. Проведение регенерации анионита при температуре выше 60°С отрицательно отражается на его сорбционных свойствах. Заявитель не обнаружил в патентной и другой научно-технической литературе описания способа извлечения перхлорат-иона из водного раствора, содержащего совокупность существенных признаков заявляемого способа. По мнению заявителя, это свидетельствует о новизне заявляемого изобретения. В просмотренных источниках информации не рассматривался вопрос о влиянии формы высокоосновной анионобменной смолы (хлоридной, основной или какой-либо другой) на величину сорбции перхлорат-ионов и степень регенерации смолы. Во всех известных заявителю способах используются промышленно изготовляемые или специально разработанные марки смол в Cl– или ОН– форме. Авторами впервые получены данные о значительно большей эффективности использования высокоосновной смолы в нитратной (NO3 –) форме для сорбции перхлорат-ионов по сравнению с традиционной хлоридной формой. Этот эффект достигается сочетанием применения смолы в NO3 – форме и использования водных растворов нитратов щелочных и щелочноземельных металлов в качестве регенерирующих растворов. Проведенное авторами сравнение заявляемого способа с известными, использующими сильноосновные аниониты в Cl– форме и регенерацию раствором хлористого натрия (NaCl), в одинаковых условиях, показало, что при близких значениях величины сорбции перхлорат-иона степень десорбции, определяющая эффективность всей технологии, по заявляемому способу в несколько раз выше. При использовании известного способа-прототипа степень регенерации не превышает 20% даже при повышенной температуре (40°С) и регенерации концентрированным (30%) раствором NaCl, в то время как уже при температуре 20°С регенерация сильноосновного анионита в NO3 – форме раствором NaNO3 достигает 50%, Mg(NO3)2 – около 60%, а регенерация растворами КНО3 в интервале температур от 0 до 40°С достигает 100%. Таким образом, использование в заявляемом способе сильноосновного анионита в нитратной форме и осуществление его регенерации в водном растворе нитрата щелочного или щелочноземельного металла при температуре 0-60°С обеспечивает повышение эффективности сорбционного извлечения перхлорат-иона из высококонцентрированного раствора сложного солевого состава, что, по мнению заявителя, позволяет считать заявляемое техническое решение удовлетворяющим критерию “изобретательский уровень”. Заявляемый способ извлечения перхлорат-иона из водного раствора поясняется чертежами, где на фиг.1 в таблице 1 показаны сравнительные результаты измерений динамической обменной емкости сильноосновных анионитов в Cl–и NO3 – формах; на фиг.2 в таблице 2 приведены сравнительные результаты измерений степени десорбции перхлорат-иона известным способом-прототипом и заявляемым способом (использовалось количество анионита, эквивалентное 5 г сухой смолы); на фиг.3 в таблице 3 показаны сравнительные результаты измерений степени десорбции перхлорат-иона известным способом по патенту США (№6448299, МПК B 01 J 49/00, опубликован 10.09.2002) и заявляемым способом (использовалось количество анионита, эквивалентное 5 г сухой смолы); на фиг.4 в таблице 4 приведены результаты исследования нескольких циклов сорбции-десорбции перхлорат-иона заявляемым способом. Заявляемый способ осуществляют следующим образом. Высококонцентрированный раствор сложного солевого состава, содержащего перхлорат-ион, пропускают через колонку, наполненную высокоосновным анионитом в нитратной форме. Высокоосновный анионит в нитратной форме может быть получен из промышленных гелевых анионитов (АВ-17, Purolite А-400 и т.п.), переведенных из исходной хлоридной формы в нитратную форму. После извлечения перхлорат-иона из раствора проводят регенерацию анионита от перхлорат-иона раствором нитрата щелочного или щелочноземельного металла при температуре от 0 до 60°С. Далее циклы сорбции-десорбции повторяют. Ниже приводятся примеры осуществления заявляемого способа извлечения перхлорат-иона из водных растворов. Заявляемый способ был апробирован на высококонцентрированных водных солевых растворах, состав которых приведен ниже:
В связи с отсутствием промышленно выпускаемых высокоосновных анионитов в нитратной (NO3 –) форме выпускаемые промышленностью аниониты АВ-17 и Purolite A-400, находящиеся в хлоридной форме, были переведены в нитратную форму. С этой целью 110 г исходного анионита А-400 и 100 г исходного анионита АВ-17 залили 400 мл воды, в которой предварительно растворили 50 г чистого нитрата натрия. После выдерживания в растворе в течение суток растворы слили, аниониты отфильтровали, промыли водой и высушили на воздухе. Полученные таким образом аниониты использовали в последующих экспериментах в качестве анионитов в нитратной форме. Содержание перхлорат-иона в растворах определяли двумя независимыми аналитическими методами: ЯМР-спектроскопией и с помощью перхлорат-селективного электрода. Пример 1. Порцию анионита АВ-17 в нитратной форме в количестве 5 г поместили в экспериментальную колонку и пропустили через нее технологический раствор указанного выше состава в количестве 400 мл при температуре 20°С. В собранных в процессе извлечения пробах определяли содержание перхлорат-иона, которое (в пересчете на KCiO4) составило 1,003 г, а емкость воздушно-сухого анионита АВ-17 в нитратной форме составила 1,40 ммоль/г. Результаты эксперимента приведены в таблице 1 на фиг.1 (строка 2). Далее через 5 г анионита АВ-17, насыщенного перхлорат-ионом, пропускали свободный от перхлорат-иона 18%-ный раствор нитрата калия в количестве 200 мл при скорости потока 0,7 мл/мин. В собранных в процессе регенерации пробах определяли содержание перхлорат-иона и степень его извлечения, которая составила 95% (см. таблицу 2, строка 3 на фиг.2). Пример 2. Определяли сорбцию перхлорат-иона, как в примере 1, но десорбцию проводили 10%-ным раствором нитрата калия в количестве 300 мл при скорости потока 1,0 мл/мин. Результаты эксперимента приведены в таблице 2 на фиг.2 (строка 4). Пример 3. Определяли сорбцию перхлорат-иона, как в примере 1, но десорбцию проводили 24%-ным раствором нитрата калия в количестве 200 мл при скорости потока 1,0 мл/мин. Результаты эксперимента приведены в таблице 2, строка 5 на фиг.2. Пример 4. Порцию анионита Purolite A-400 в нитратной форме в количестве 5 г поместили в экспериментальную колонну и пропустили через нее технологический раствор указанного выше состава в количестве 400 мл при температуре 20°С. В собранных в процессе извлечения пробах определяли содержание перхлорат-иона. Результаты эксперимента приведены в таблице 1, строка 4 на фиг.1. Далее через 5 г анионита Purolite A-400, насыщенного перхлорат-ионом, пропускали свободный от перхлорат-иона 10%-ный раствор нитрата калия в количестве 300 мл. В собранных в процессе регенерации пробах определяли содержание перхлорат-иона и степень его извлечения, которая составила 79% (см. таблицу 2, строка 6 на фиг.2). Пример 5. Определяли сорбцию и десорбцию перхлорат-иона, как в примере 4, но при температуре 40°С. Результаты приведены в таблице 1, строка 5 (фиг.1) и в таблице 2, строка 6 (фиг.2). Пример 6. Определяли сорбцию и десорбцию перхлорат-иона, как в примере 4, но сорбцию проводили при температуре 60°С, а десорбцию при температуре 3°С. Результаты приведены в таблице 1, строка 6 (фиг.1) и в таблице 2, строка 6 (фиг.2). Пример 7. Определяли сорбцию перхлорат-иона при температуре 1°С, а десорбцию осуществляли 14%-ным раствором KNO3 при температуре 3°С. Результаты приведены в таблице 1, строка 7 (фиг.1) и в таблице 2, строка 7 (фиг.2). Примеры 8 и 9. Определяли сорбцию перхлорат-иона при температуре 20°С, а десорбцию осуществляли 24%-ным раствором KNO3 при температуре 20 и 40°С. Результаты приведены в таблице 1, строка 4 (фиг.1) и в таблице 2, строка 8 (фиг.2). Пример 10. Определяли сорбцию перхлорат-иона, как в примере 1, но десорбцию проводили 16%-ным раствором нитрата натрия в количестве 100 мл при скорости потока 2,5 мл/мин. Результаты эксперимента приведены в таблице 2, строка 9 на фиг.2. Пример 11. Определяли сорбцию перхлорат-иона, как в примере 1, но десорбцию проводили раствором нитрата магния молярностью 3.3 в количестве 200 мл при скорости потока 0,8 мл/мин. Результаты эксперимента приведены в таблице 2, строка 10 на фиг.2. Примеры 12 и 13. Для сравнения провели по способу-прототипу сорбцию перхлорат-иона на анионитах АВ-17 и Purolite A-400 в хлоридной форме и десорбцию раствором хлористого натрия. Результаты приведены в таблице 1, строки 1 и 3 (фиг.1) и в таблице 2, строки 1 и 2 (фиг.2). Как видно из приведенных данных, заявляемый способ имеет более высокую эффективность сорбционного извлечения перхлорат-иона из высококонцентрированного раствора сложного солевого состава и несравнимо большую глубину извлечения перхлорат-иона из анионита. Было проведено также сравнение эффективности десорбции по заявляемому способу и известному способу, описанному в патенте США №6448299, в котором осуществляют десорбцию перхлорат-иона хлорным железом в вводно-спиртовом солянокислом растворе из смолы в хлоридной форме. Результаты сравнительных испытаний, приведенные в таблице 3 на фиг.3, показывают значительно более высокую степень десорбции по заявляемому способу. Для оценки возможности многократного использования высокоосновного анионита в нитратной форме были проведены исследования нескольких циклов сорбции-десорбции перхлорат-иона на анионите АВ-17 в нитратной форме 15%-ными растворами KNO3 при 20°С и на анионите Purolite A-400 в нитратной форме 25%-ными растворами KNO3 при температуре 40°С. Результаты исследований приведены в таблице 4 на фиг.4. Полученные данные свидетельствуют о целесообразности многократного использования анионита без заметного ухудшения эффективности заявляемого способа.
Формула изобретения
1. Способ извлечения перхлорат-иона из водного раствора, включающий пропускание раствора через высокоосновный анионит и последующую регенерацию упомянутого анионита в водном растворе соли металла, отличающийся тем, что в качестве упомянутого анионита используют анионит в нитратной форме, а его регенерацию осуществляют в водном растворе нитрата щелочного или щелочноземельного металла при температуре 0-60°С. 2. Способ по п.1, отличающийся тем, что после регенерации анионит в нитратной форме промывают водой для повторного использования. 3. Способ по п.1, отличающийся тем, что упомянутый анионит в нитратной форме получают выдержкой в водном растворе нитрата щелочного металла высокоосновного анионита в хлоридной форме. 4. Способ по п.1, отличающийся тем, что упомянутый анионит в нитратной форме получают выдержкой в водном растворе нитрата щелочного металла высокоосновного анионита в основной (ОН-) форме. 5. Способ по п.1, отличающийся тем, что в качестве нитрата щелочного металла используют нитрат калия. 6. Способ по п.1, отличающийся тем, что в качестве нитрата щелочного металла используют нитрат натрия. 7. Способ по п.1, отличающийся тем, что в качестве нитрата щелочноземельного металла используют нитрат магния. 8. Способ по п.1, отличающийся тем, что упомянутую регенерацию анионита в нитратной форме осуществляют при температуре 0-45°С. 9. Способ по п.1, отличающийся тем, что упомянутую регенерацию анионита в нитратной форме осуществляют в упомянутом водном растворе нитрата щелочного или щелочноземельного металла с концентрацией от 1 мас.% до концентрации насыщения при температуре регенерации.
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 02.07.2006
Извещение опубликовано: 27.06.2007 БИ: 18/2007
NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение
Дата, с которой действие патента восстановлено: 20.10.2007
Извещение опубликовано: 20.10.2007 БИ: 29/2007
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||