(21), (22) Заявка: 2004106292/28, 03.03.2004
(24) Дата начала отсчета срока действия патента:
03.03.2004
(45) Опубликовано: 20.10.2005
(56) Список документов, цитированных в отчете о поиске:
ГОСТ 17624-87. Бетон. Ультразвуковой метод определения прочности. – М.: Издательство стандартов, 1987, с.23. SU 734550 A, 15.05.1980. SU 616580 A, 25.07.1978. JP 2000180425 A, 30.06.2000. JP 4276546 A, 01.10.1992. JP 58066849 A, 21.04.1983.
Адрес для переписки:
400012, г.Волгоград, ГСП, ул. Трехгорная, 21, ГНУ ПНИИЭМТ, А.Г. Алимову
|
(72) Автор(ы):
Алимов А.Г. (RU), Карпунин В.В. (RU)
(73) Патентообладатель(и):
Государственное научное учреждение Поволжский научно-исследовательский институт эколого-мелиоративных технологий (RU)
|
(54) СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПРОЧНОСТИ БЕТОНА В КОНСТРУКЦИЯХ И СООРУЖЕНИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ
(57) Реферат:
Использование: для ультразвукового контроля прочности бетона в конструкциях и сооружениях в процессе эксплуатации. Сущность: заключается в том, что ультразвуковой контроль прочности бетона в конструкциях и сооружениях в процессе эксплуатации включает измерение времени и скорости распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисление средней и максимальной скоростей ультразвука в контролируемой зоне, выбуривание в конструкции и испытание кернов с последующим определением значений прочностей в участках, имеющих соответственно среднее и максимальное значение скорости ультразвука, а также расчетное определение прочности бетона на сжатие в участках контролируемой зоны конструкции, при этом определяют влажность бетона в намеченных участках конструкции и устанавливают среднюю и максимальную влажности бетона в контролируемой зоне, а прочность бетона по классу прочности на сжатие до В25 рассчитывают в соответствии с математической формулой. Технический результат: повышение точности и надежности определения прочности бетона повышенной влажности. 2 ил. 
Изобретение относится к области неразрушающего контроля строительных конструкций, преимущественно гидротехнических и гидромелиоративных сооружений, и может быть использовано для определения прочности бетонных конструкций в процессе их строительства, реконструкции и эксплуатации.
Известен способ неразрушающего контроля прочности бетонов, включающий определение усилия вырыва анкерного устройства из бетона и определение по усилию вырыва прочности бетона (метод отрыва со скалыванием) (см., например, ГОСТ 22690-88. Бетоны. Определение прочности механическими методами неразрушающего контроля. – М.: Издательство стандартов, 1988, С.2…9).
Недостатком описанного способа являются ограничения по его использованию в густоармированных и тонкостенных конструкциях, прочность бетона глубинных слоев определяется глубиной заделки анкерного устройства и значительной трудоемкостью проведения измерения.
Известен также способ ультразвукового контроля бетонных и железобетонных конструкций, включающий измерение скорости ультразвука в образцах, в виде кубиков, и материале конструкций, механические испытания образцов – кубов, построение градуировочной зависимости “скорость ультразвука – прочность бетона” по результатам измерений и испытаний образцов – кубов, а также определение прочности бетона конструкции по результатам ультразвуковых измерений и предварительно построенной градуировочной зависимости (см., например, ГОСТ 17624-87. Бетон. Ультразвуковой метод определения прочности. – М.: Издательство стандартов, 1987, С.1…20).
Недостатком этого способа является значительная трудоемкость, обусловленная необходимостью проведения механических испытаний образцов – кубов бетона и построением градуировочной зависимости.
Наиболее близким к заявляемому относится способ ультразвукового контроля прочности бетона в конструкциях и сооружениях в процессе эксплуатации, включающий измерение времени и скорости (Сj) распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисление средней и максимальной (Смакс) скоростей ультразвука в контролируемой зоне, выбуривание в конструкции и испытание кернов с последующим определением значений прочностей Rф.макс, в участках, имеющих соответствующие скорости ультразвука Смакс, а также определение прочности бетона на сжатие:
класса до В 25 по формуле

класса выше В 25 по формуле

где R – прочность бетона в контролируемом j…ом участке, МПа;
Rф.макс – максимальная прочность бетона в контролируемой зоне конструкции, МПа;
– средняя прочность бетона в контролируемой зоне конструкции, МПа;
Смакс – максимальная скорость распространения ультразвука в бетоне контролируемой зоны, м/с;
– средняя скорость распространения ультразвука в бетоне контролируемой зоны, м/с;
Cj – скорость распространения ультразвука в бетоне на j-ом участке контролируемой зоны, м/с; (см., например, ГОСТ 17624 – 87. Бетоны. Ультразвуковой метод определения прочности. – М.: Издательство стандартов, 1987, С.23, приложение 7).
Указанный способ в данном Российском стандарте не учитывает влияние влажности бетона в конструкциях сооружений на скорость распространения в нем ультразвуковых колебаний (УЗК). Экспериментально установлено, что с увеличением влажности бетона значительно возрастает в нем скорость распространения УЗК. Поэтому определение прочности влажного бетона в эксплуатируемых конструкциях и сооружениях вышеуказанным способом осуществляется с большой погрешностью.
Сущность заявленного изобретения
Задача, на решение которой направлено заявленное изобретение, – создание нового способа ультразвукового контроля прочности бетона повышенной влажности.
Технический результат – повышение точности и надежности определения прочности бетона повышенной влажности.
Указанный технический результат достигается тем, в известном способе ультразвукового контроля прочности бетона, включающем измерение времени распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисление средней и максимальной (Смакс) скоростей ультразвука в контролируемой зоне, выбуривание из конструкции и испытание кернов с последующим определением значений прочностей Rф.макс, в участках, имеющих соответственно скорости ультразвука Смакс, скорость распространения УЗК (Сj, м/с) и прочность бетона (R, МПа) определяют в зависимости от его влажности (W, %).
Изобретение поясняется чертежами.
На фиг.1 графически представлена универсальная зависимость относительного параметра скорости распространения ультразвука в экспериментальных бетонных образцах класса по прочности на сжатие В 12,5…В 40 от их влажности.
На фиг.2 графически представлена зависимость интегрального показателя от влажности бетона.
Для справки: данная кривая (см. фиг.1) описывается уравнением степенной функции следующего вида

где Сj – скорость распространения УЗК в бетоне при W>0%, м/с;
С0 – скорость распространения УЗК в бетоне при W=0% (для бетонов класса В 12,5…В 40 по прочности на сжатие, С0 изменяется в пределах 4050…4600 м/с);
0,00065 и 3,2 – эмпирические коэффициенты, полученные в результате математической обработки экспериментальных данных;
W – влажность бетона, % (по массе);
Коэффициент корреляции данной зависимости (3) составляет К=0,994.
Показатель – величина, обратная относительному параметру скорости распространения ультразвука в бетонах класса В 12,5…В 40 по прочности на сжатие от их влажности, которая описывается уравнением убывающей степенной функции (см. фиг.2)

где С0 – скорость распространения УЗК в бетоне при W=0%, м/с;
Cj – скорость распространения УЗК в бетоне при W>0%, м/с;
W – влажность бетона, % (по массе);
0,00069 и 3,1 – эмпирические коэффициенты, установленные в результате исследований.
Коэффициент корреляции полученной зависимости (4) составляет К=0,996.
Для определения прочности бетона повышенной влажности в конструкциях сооружений в процессе эксплуатации по результатам исследований получены следующие регрессивные модели:
1. Для бетонов класса по прочности на сжатие до В 25

где R – прочность бетона в j-ом участке контролируемой зоны, МПа;
– средняя прочность бетона в контролируемой зоне конструкции, МПа;
Cj – скорость распространения ультразвука в j-ом участке контролируемой зоны, м/с;
– средняя скорость распространения ультразвука в бетоне контролируемой зоны, м/с;
Wj – влажность бетона в j-ом участке контролируемой зоны, % (по массе);
– средняя влажность бетона в контролируемой зоне, % (по массе). Коэффициент корреляции данной модели (5) составляет 0,99.
2. Для бетонов класса по прочности на сжатие выше В 25

где R – прочность бетона в j-ом участке контролируемой зоны, МПа;
Rф.макс – максимальная прочность бетона в контролируемой зоне, МПа;
Cj – скорость распространения ультразвука в j-ом участке контролируемой зоны, м/с;
Смакс – максимальная скорость распространения ультразвука в контролируемой зоне, м/с;
Wj – влажность бетона в j-ом участке контролируемой зоны, % (по массе);
Wмакс – максимальная влажность бетона в контролируемой зоне, % (по массе).
Коэффициент корреляции данной модели (6) составляет 0,985.
Сведения, подтверждающие возможность реализации заявленного способа, заключаются в следующем.
Заявленный способ ультразвукового контроля прочности бетона в конструкциях и сооружениях в процессе эксплуатации осуществляют следующим образом.
Измеряют время и скорость распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисляют среднюю и максимальную (Смакс) скорости ультразвука в контролируемой зоне, выбуривают в конструкции и испытывают керны с последующим определением значений прочностей Rф.макс, в участках, имеющих соответственно скорости ультразвука Смакс, определяют влажность бетона (Wj, Wмакс, ) в намеченных участках конструкции и затем определяют прочность бетона в участках контролируемой зоны по формулам:
Для бетонов класса по прочности на сжатие до В 25 по формуле

где R – прочность бетона в j-ом участке контролируемой зоны, МПа;
– средняя прочность бетона в контролируемой зоне конструкции, МПа;
Cj – скорость распространения ультразвука в j-ом участке контролируемой зоны, м/с;
– средняя скорость распространения ультразвука в бетоне контролируемой зоны, м/с;
Wj – влажность бетона в j-ом участке контролируемой зоны, % (по массе);
– средняя влажность бетона в контролируемой зоне, % (по массе).
Для бетонов класса по прочности на сжатие выше В 25 по формуле

где R – прочность бетона в j-ом участке контролируемой зоны, МПа;
Rф.макс – максимальная прочность бетона в контролируемой зоне, МПа;
Cj – скорость распространения ультразвука в j-ом участке контролируемой зоны, м/с;
Смакс – максимальная скорость распространения ультразвука в контролируемой зоне, м/с;
Wj – влажность бетона в j-ом участке контролируемой зоны, % (по массе);
Wмакс – максимальная влажность бетона в контролируемой зоне, % (по массе).
Особенностями предложенного способа контроля прочности бетона являются новые методы определения скорости ультразвука и прочности бетона в зависимости от его влажности в конструкциях сооружений в процессе эксплуатации.
ПРИМЕР 1. Прочность бетона класса В 22,5 контролируют ультразвуковым способом в конструкции монолитной бетонной облицовки оросительного канала (после его опорожнения от воды) способом поверхностного прозвучивания. Параметры оросительного канала: наполнение (Н) – 2 м, ширина по дну (в) – 2 м, коэффициент заложения откосов (m) – 2. Толщина бетонной облицовки ( ) – 12 см.
База прозвучивания (1) – 120 мм. Коэффициент перехода скорости ультразвука при поверхностном прозвучивании к скорости при сквозном прозвучивании составляет К=1,93.
По результатам ультразвуковых испытаний установлено, что средняя скорость распространения ультразвука в 50 участках контролируемой зоны конструкции монолитной бетонной облицовки при поверхностном прозвучивании составляет 2524 м/с, при сквозном прозвучивании – 
Средняя влажность бетона контролируемой зоны конструкции монолитной бетонной облицовки после опорожнения канала от воды составляет =4,58% (по массе).
Средняя прочность бетона в конструкции бетонной облицовки, установленная по двум выбуренным и испытанным кернам на участке, где скорость распространения ультразвука наиболее близка к средней скорости ультразвука ( ), составляет 29 МПа.
Влажность бетона в j-ом участке контролируемой зоны бетонной облицовки канала составляет Wj-=2,3% (по массе), скорость распространения ультразвука в бетоне Сj=2353-1,93=4541 м/с.
Прочность бетона на сжатие контролируемой зоны в j-ом участке монолитной бетонной облицовки с влажностью бетона Wj=2,3% и скоростью распространения ультразвука Сj=4541 м/с, определенная по приведенной зависимости (5), составляет

Прочность бетона на сжатие контролируемой зоны в этом же j-ом участке монолитной бетонной облицовки с влажностью бетона Wj=2,3% и скоростью распространения ультразвука Сj=4541 м/с, определенная по формуле (1) в соответствии с ГОСТ 17624-87, прил.7, составляет

Погрешность при определении прочности бетона (без учета его влажности) по ГОСТ 17624-87, прил.7 при этом составила 21,9-29,01

ПРИМЕР 2. Прочность бетона класса В 35 контролируют ультразвуковым способом в конструкции монолитной бетонной облицовки магистрального канала (после его опорожнения от воды) способом поверхностного прозвучивания. Параметры оросительного канала: наполнение (Н) – 3 м, ширина по дну (в) – 4 м, коэффициент заложения откосов (m) – 3. Толщина бетонной облицовки ( ) – 12 см.
База прозвучивания (1) – 120 мм. Коэффициент перехода скорости ультразвука при поверхностном прозвучивании к скорости при сквозном прозвучивании составляет К=1,93.
По результатам ультразвуковых испытаний установлено, что максимальная скорость распространения ультразвука в 60 участках контролируемой зоны конструкции монолитной бетонной облицовки при поверхностном прозвучивании составляет 2690 м/с, при сквозном прозвучивании – Смакс=1,93·2690=5192 м/с.
Максимальная влажность бетона контролируемой зоны конструкции монолитной бетонной облицовки после опорожнения канала от воды составляет 5,3% (по массе).
Максимальная прочность бетона в конструкции бетонной облицовки, установленная по двум выбуренным и испытанным кернам на участке с максимальной скоростью распространения ультразвука, составляет 46 МПа.
Влажность бетона в j-ом участке контролируемой зоны бетонной облицовки магистрального канала составляет Wj=2,6% (по массе), скорость распространения ультразвука в бетоне Сj=2409,3-1,93=4650 м/с.
Прочность бетона на сжатие контролируемой зоны в j-ом участке монолитной бетонной облицовки с влажностью бетона Wj=2,6% и скоростью распространения ультразвука Сj=4650 м/с, определенная по приведенной зависимости (6), составляет

Прочность бетона на сжатие в j-ом участке контролируемой зоны монолитной бетонной облицовки с влажностью бетона Wj=2,6% и скоростью распространения ультразвука Сj=4650 м/с, определенная по формуле (2) в соответствии с ГОСТ 17624-87, прил.7, составляет 4650

Погрешность при определении прочности бетона (без учета его влажности) по ГОСТ 17624-87, прил.7 при этом составила 22,62-45,04

Предложенный способ контроля прочности бетона в конструкциях, работающих во влажной среде, позволяет снизить погрешность измерений до 1…2%.
Формула изобретения
Ультразвуковой способ контроля прочности бетона в конструкциях и сооружениях в процессе эксплуатации, включающий измерение времени и скорости распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисление средней и максимальной скоростей ультразвука в контролируемой зоне, выбуривание в конструкции и испытание кернов с последующим определением значений прочностей в участках, имеющих соответственно среднее и максимальное значение скорости ультразвука, а также расчетное определение прочности бетона на сжатие в участках контролируемой зоны конструкции, отличающийся тем, что определяют влажность бетона в намеченных участках конструкции и устанавливают среднюю и максимальную влажности бетона в контролируемой зоне, а прочность бетона по классу прочности на сжатие до В25 рассчитывают из выражения

где R – прочность бетона в j-ом участке контролируемой зоны, МПа;
– средняя прочность бетона в контролируемой зоне конструкции, МПа;
Cj – скорость распространения ультразвука в j-ом участке контролируемой зоны, м/с;
– средняя скорость распространения ультразвука в бетоне контролируемой зоны, м/с;
Wj – влажность бетона в j-ом участке контролируемой зоны, мас.%;
– средняя влажность бетона в контролируемой зоне, мас.%;
и для бетонов по классу прочности на сжатие выше В 25 устанавливают по формуле

где Rф.макс – максимальная прочность бетона в контролируемой зоне, МПа;
Cj – скорость распространения ультразвука в j-ом участке контролируемой зоны, м/с;
Смакс – максимальная скорость распространения ультразвука в контролируемой зоне, м/с;
Wмакс – максимальная влажность бетона в контролируемой зоне, мас.%.
РИСУНКИ
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 04.03.2006
Извещение опубликовано: 27.10.2007 БИ: 30/2007
|