Патент на изобретение №2260811

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2260811 (13) C1
(51) МПК 7
G01R29/24
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 18.01.2011 – прекратил действие

(21), (22) Заявка: 2004107804/28, 16.03.2004

(24) Дата начала отсчета срока действия патента:

16.03.2004

(45) Опубликовано: 20.09.2005

(56) Список документов, цитированных в отчете о
поиске:
SU 1307395 A1, 30.04.1987. SU 1471152 A1, 07.04.1989. SU 1531031 A1, 23.12.1989. SU 1688199 A1, 30.10.1991. SU 1652946 А1, 30.05.1991. JP 8-152449 А, 11.06.1996.

Адрес для переписки:

394006, г.Воронеж, Университетская пл., 1, ГОУ ВПО Воронежский государственный университет

(72) Автор(ы):

Алейников Н.М. (RU),
Алейников А.Н. (RU),
Агошкин В.В. (RU),
Щербаков А.В. (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования Воронежский государственный университет (RU)

(54) СПОСОБ ОПРЕДЕЛЕНИЯ ПОВЕРХНОСТНОЙ ПЛОТНОСТИ ЗАРЯДА ПЛОСКИХ ДИЭЛЕКТРИКОВ

(57) Реферат:

Исследуемый образец помещают в зазор плоского статического конденсатора с неподвижными обкладками, возбуждают гармонические механические колебания образца в направлении нормали к обкладкам конденсатора и измеряют величину сигнала, пропорциональную току в цепи конденсатора при нулевом напряжении на конденсаторе. Далее на обкладки конденсатора подают переменное напряжение, синфазное с механическими колебаниями образца, и снова измеряют величину сигнала, пропорциональную току в цепи конденсатора. Величину поверхностной плотности заряда вычисляют по амплитуде переменного напряжения, амплитуде колебаний образца и измеренным значениям сигнала, пропорционального току в цепи конденсатора. Данный способ позволяет в сотни и тысячи раз уменьшить напряжение на измерительном конденсаторе по сравнению со способами, основанными на применении динамического измерительного конденсатора. 1 ил.

Изобретение относится к электротехническим измерениям и предназначено для измерения поверхностной плотности полного (реального) заряда диэлектрических материалов плоской формы.

Способы измерения заряда в плоских диэлектриках, основанные на индуцировании тока в цепи динамического конденсатора, между обкладками которого находится заряженный диэлектрик, известны, например, при компенсационных измерениях, когда постоянным компенсационным напряжением достигается нулевой ток в цепи динамического конденсатора. Существенным недостатком компенсационных способов является необходимость применения компенсационных напряжений, величина которых при больших плотностях заряда в диэлектриках может достигать нескольких киловольт, что приводит к разрушению исследуемого электретного состояния и делает эти способы недостаточно корректными и технологичными [1].

Наиболее близким по технической сущности к предлагаемому способу является способ измерения заряда в плоских диэлектриках [2]), позволяющий существенно уменьшить величину напряжения на измерительном вибрационном конденсаторе по сравнению с компенсационными способами. В этом способе исследуемый образец помещают в зазор конденсатора с вибрирующим электродом, измеряют ток конденсатора, перемещают образец в другое положение, измеряют величину перемещения и, регулируя постоянное напряжение на конденсаторе, добиваются первоначального тока конденсатора и измеряют постоянное напряжение на конденсаторе.

Недостаток этого способа в том, что необходимо перемещать образец и измерять величину перемещения, которая должна быть достаточно малой, и от точности измерения которой зависит точность определения искомой величины заряда. Кроме того, не учитывается возможность изменения начальной фазы колебаний тока вибрационного конденсатора при перемещении образца [1], что может приводить к ошибкам в определении не только величины, но и полярности заряда.

Задача, решаемая данным изобретением, – упрощение и повышение точности измерений заряда диэлектрика при небольших напряжениях на измерительном конденсаторе.

Поставленная задача достигается тем, что в известном способе измерения плотности заряда плоских диэлектриков, основанном на индуцировании переменного тока в цепи измерительного конденсатора с заряженным диэлектриком в его зазоре – исследуемый образец помещают в зазор плоского статического конденсатора с неподвижными обкладками, возбуждают гармонические механические колебания образца в направлении нормали к обкладкам конденсатора и измеряют при нулевом напряжении на конденсаторе величину сигнала А1, пропорциональную току в цепи измерительного конденсатора, после чего на обкладки конденсатора подают синфазное с механическими колебаниями образца напряжение и снова измеряют величину сигнала А2, пропорциональную току конденсатора, а искомую величину поверхностной плотности полного заряда вычисляют по формуле

где 0=8,86·10-12 Ф/м – электрическая постоянная, Um – амплитуда переменного напряжения, подаваемого на обкладки конденсатора, а – амплитуда колебаний образца.

В работе [1] для одномерной модели конденсатора, в зазоре которого расположен плоский диэлектрик, приводится уравнение, устанавливающее связь напряженности поля Е в зазоре конденсатора с распределенным в диэлектрике зарядом

где – диэлектрическая проницаемость образца, (х) – объемная плотность заряда, распределенного в образце, l – величина зазора между образцом и обкладкой конденсатора, к которой приложено напряжение U относительно другой обкладки, h – величина воздушного зазора конденсатора, L – толщина образца, х – направление нормали к образцу,

где и L – поверхностные плотности полного (реального) и эффективного (формального) заряда, Vk – контактная разность потенциалов обкладок конденсатора. Полагая Vk=0, перепишем (1) в виде

Пусть образец в зазоре конденсатора совершает механические гармонические колебания и синфазно с колебаниями образца изменяется напряжение на конденсаторе, т.е. l=l0+asint и U=Umsint, где а – амплитуда вибрации, Um – амплитуда переменного напряжения, – циклическая частота вибрации. В цепи конденсатора пойдет ток

где S – площадь обкладок конденсатора.

Амплитуда тока

где

Для определения величины необходимо измерить ток конденсатора Im1, например, при нулевом напряжении Um1=0, и ток Im2 при напряжении Um2=Um, отличным от нуля. Подставляя Im1 и Im2 в формулу (3), получим систему из двух уравнений Im1=Ba и Im2=B(a0Um), решая которую получим

Так как в последнее выражение входит относительная величина Im2/Im1, необязательно измерять абсолютные значения токов, а можно измерять величины, пропорциональные измеряемым токам Im1 и Im2, например, напряжения A1=kIm1 и A2=kIm2 на выходе преобразующего ток в напряжение усилителя, коэффициент преобразования которого k. Величину поверхностной плотности полного заряда вычисляют по формуле

На чертеже приведена принципиальная схема устройства, с помощью которого может быть реализован данный способ. Оно состоит из трех плоских конденсаторов – измерительного 1 и двух вспомогательных 2 и 3. Первый вспомогательный конденсатор 2 – статический. Он предназначен для генерации переменного напряжения, синфазного механическим колебаниям образца 4, и образован неподвижными обкладками 5 и 6, между которыми расположен плоский заряженный электрет 7. Второй вспомогательный конденсатор 3 – динамический. Он предназначен для измерения амплитуды механических колебаний образца 4 и образован вибрационной обкладкой 8 и неподвижной обкладкой 9. Образец 4 и электрет 7 расположены на держателе 10, который механически жестко связан с вибрационной обкладкой 8. Механические колебания держателя 10 возбуждаются вибратором 11. Для измерения сигнала, пропорционального току измерительного конденсатора 1 в цепь этого конденсатора включен преобразующий ток в напряжение усилитель 12, на выходе которого включен вольтметр 13. В цепь первого вспомогательного конденсатора 2 включен преобразующий ток в напряжение усилитель 14, на выходе которого включен вольтметр 15. С выхода усилителя 14 в разрыв цепи измерительного конденсатора 1 подается напряжение, которое может отключаться переключателем 16. В цепь второго вспомогательного конденсатора 3 включен источник 17 постоянного напряжения (ИПН) и измеритель 18 переменного тока.

Устройство работает следующим образом. Исследуемый образец 4 помещается между неподвижными обкладками 19 и 20 измерительного конденсатора 1. При возбуждении механических колебаний обкладки 8 в цепи второго вспомогательного конденсатора 3 возникает переменный ток, амплитуда которого

где S1 – площадь обкладок, a – амплитуда вибрации, – циклическая частота вибрации, U0 – напряжение источника 17, h0 – равновесное расстояние между обкладками 8 и 9. Измеряя Im, и зная параметры конденсатора S1, , U0, h0, вычисляют амплитуду а механических колебаний исследуемого образца 4.

При отключенном переключателем 16 напряжении на измерительном конденсаторе 1 вольтметром 13 измеряют величину сигнала А1. Затем переключателем 16 подключают к измерительному конденсатору 1 с выхода усилителя 14 напряжение, амплитуду Um которого измеряют вольтметром 15, и вольтметром 13 измеряют величину сигнала А2. Полученные значения a, Um, А1 и А2 подставляют в формулу (4) и определяют искомую величину поверхностной плотности полного заряда.

Рассмотрим различные примеры, иллюстрирующие влияние полярности заряда на результаты измерений:

Пример 1. Пусть при a=0,01 см и Um=20 В величина A1/A2=0,9. Подставляя а, Um и A1/A2 в (4), получим =8,86·10-14·20/[0,01·(1-0,9)]=+1,77·10-9 (Кл/см2).

Пример 2. Пусть при a=0,01 см и Um=20 В величина A1/A2=1,2. Подставляя а, Um и A1/A2 в (4), получим =8,86·10-14·20/[0,01·(1-1,2)]=-0,886·10-9 (Кл/см2).

Из приведенных примеров следует:

1. Относительная величина зависит от полярности искомого заряда и принимает значения А12<1 при >0 и A1/A2>1, если <0.

2. Несмотря на относительно большие плотности зарядов (+1,77 и -0,886 нКл/см2), напряжение на конденсаторе составило всего 20 В, в то время как при компенсационных измерениях для таких плотностей заряда напряжение компенсации составило бы несколько киловольт [1].

Литература

1. А.Н.Алейников, Н.М.Алейников. Индукционные методы определения параметров остаточного заряжения диэлектрических материалов, “Материаловедение”, М.: “Наука и технологии”, №3, 2002, с.26-33.

2. Патент RU №1471152, кл. G 01 R 29/12. Способ определения плотности заряда в диэлектриках.

Формула изобретения

Способ измерения плотности заряда плоских диэлектриков, основанный на индуцировании переменного тока в цепи измерительного конденсатора с заряженным диэлектриком в его зазоре, отличающийся тем, что исследуемый образец помещают в зазор плоского конденсатора с неподвижными обкладками, возбуждают гармонические механические колебания образца в направлении нормали к обкладкам конденсатора и измеряют при нулевом напряжении на конденсаторе величину сигнала А1, пропорциональную току в цепи измерительного конденсатора, после чего на обкладки конденсатора подают синфазное с механическими колебаниями образца напряжение и снова измеряют величину сигнала А2, пропорциональную току конденсатора, а искомую величину поверхностной плотности полного заряда вычисляют по формуле

где 0=8,86·10-12 Ф/м – электрическая постоянная,

Um – амплитуда переменного напряжения,

а – амплитуда колебаний образца.

РИСУНКИ


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 17.03.2007

Извещение опубликовано: 20.02.2008 БИ: 05/2008


Categories: BD_2260000-2260999