Патент на изобретение №2257265

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2257265 (13) C1
(51) МПК 7
B01J49/00, C02F1/42
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 18.01.2011 – действует

(21), (22) Заявка: 2004105526/15, 26.02.2004

(24) Дата начала отсчета срока действия патента:

26.02.2004

(45) Опубликовано: 27.07.2005

(56) Список документов, цитированных в отчете о
поиске:
SU 664664 A1, 30.05.1979. SU 1389839 A1, 23.04.1988. RU 2058817 C1, 27.04.1996. RU 2205692 C1, 10.06.2003. US 4083782 А, 11.04.1978.

Адрес для переписки:

187110, Ленинградская обл., г. Кириши, ш. Энтузиастов, 6, НПП “Биотехпрогресс”, С.В. Петрову

(72) Автор(ы):

Добрин Б.И. (RU),
Петров С.В. (RU),
Бородин А.Б. (RU)

(73) Патентообладатель(и):

ЗАО “Научно-производственное предприятие “БИОТЕХПРОГРЕСС” (RU)

(54) СПОСОБ РЕГЕНЕРАЦИИ СЛАБОКИСЛОТНЫХ КАРБОКСИЛЬНЫХ КАТИОНИТОВ

(57) Реферат:

Изобретение относится к области водоочистки, а именно к способам регенерации катионобменных смол (катионитов), используемых для умягчения воды. Предлагается способ регенерации слабокислотных карбоксильных катионитов с переводом их в Н-Na форму путем пропускания через их слой последовательно кислоты в стехиометрическом соотношении до достижения на выходе рН 3.9-4.2, и 1.0-1.5% раствор хлористого натрия. Изобретение позволяет сократить расходы реагентов при заданной степени трансформации катионита. 4 табл.

Изобретение относится к области водоочистки, а именно к способам регенерации катионобменных смол (катионитов), используемых для умягчения воды.

3 в одноступенчатом процессе и до 0,01 моль/м3 при Na-катионировании в две ступени.

Недостатком применения указанных смол являются значительные расходы реагентов при регенерации и необходимость утилизации значительных объемов засоленных сточных вод. Это связано с тем, что истощенные ионитные фильтры регенерируются раствором хлорида натрия при удельных расходах 0,1-0,3 кг/моль извлекаемых из воды ионов жесткости, что соответствует превышению расхода реагента по сравнению со стехиометрическим количеством в 1,7-5,1 раз. Избыток реагента вместе с отработанными регенерационными растворами сбрасывается в водоемы, что наносит ущерб окружающей среде, ухудшает качество воды, используемой для питья и хозяйственных нужд. Более того, повышение солесодержания природных вод при их обессоливании и умягчении на предприятиях, потребляющих загрязненную воду, приводит к дополнительным затратам реагентов, а следовательно, к прогрессирующему возрастанию затрат на водоподготовку и увеличению загрязнения водоемов. Поэтому как с экономической, так и с экологической точек зрения глубокое умягчение воды целесообразно осуществлять при минимальных расходах реагентов.

Выбор как метода очистки, так и технологии фильтрации и регенерации во многом определяется требованиями к получаемому фильтрату и характеристиками очищаемой воды. Так, при применении воды для подпитки оборотных циклов технического водоснабжения, теплосетей, в том числе и открытых (с непосредственным отбором воды населением), котлов низкого давления кроме требований к жесткости воды нормируется показатель ее щелочности (Правила технической эксплуатации электрических станций и сетей. М.: Энергоатомиздат, 1989, 288 с.). Т.е. одновременно с умягчением необходимо осуществлять регулируемое уменьшение щелочности воды при условии гарантированного исключения возможности получения воды, содержащей сильные кислоты (со значением рН<4,3-4,5).

Одним из возможных методов решения такой проблемы является применение технологии Na-Cl-ионирования (Высоцкий С.П. Теплоэнергетика. 1980, № 10, c.15-18). При ее использовании удаление бикарбонат-ионов осуществляется на сильноосновных анионитах за счет обмена на хлорид-ионы, а регенерацию катионита и анионообменника проводят одним и тем же раствором (хлорида натрия), что исключает применение в технологическом процессе дополнительных реагентов. Однако для реализации этого необходимо исключить образование осадка карбоната кальция при регенерации смеси ионитов. Для этого раствор соли готовят на умягченной воде, а сульфокатионит эксплуатируют в режиме сорбции ионов магния, что достигается загрузкой сильноосновного анионообменника в смеси с сульфокатионитом в фильтры второй ступени. Для успешной одновременной регенерации ионитов двух видов и рационального использования реагента требуется установка дополнительного фильтра с анионообменником. Кроме того, при использовании отработанного раствора анионита для регенерации катионита в фильтре первой ступени, насыщенном ионами кальция, необходимо подкисление раствора с целью удаления бикарбонат-ионов или исключения образования карбонат-ионов. Это достигается применением сильной кислоты или насыщением раствора хлорида натрия углекислотой. Т.е. в любом случае возникает необходимость использования дополнительного реагента и происходит нежелательное усложнение технологического процесса. Эти обстоятельства, а также возрастание потребления хлорида натрия, следовательно, и количества отходов производства, препятствуют широкому распространению метода Na-Cl-ионирования в практике водоподготовки. Кроме того, при Na-Cl-ионировании умягченная вода не только не уменьшает своего солесодержания, но и обогащается хлор-ионами, обладающими высокой коррозионной активностью.

Глубокое умягчение природных вод с одновременным снижением щелочности и уменьшением солесодержания достигается методом H-Na-катионирования. Известны несколько вариантов его реализации.

3 (соответствующей жесткости Na-катионированной в одну ступень воды). Однако исходя из соображений экономии реагентов (при выводе на регенерацию Н-фильтров по проскоку ионов жесткости) и требования отсутствия сильных кислот в умягченной воде метод рекомендуется применять для получения воды с остаточной щелочностью не менее 0,4 моль/м3.

Перевод Н-фильтра в натриевую форму перед регенерацией кислотой оправдан прежде всего в экономическом аспекте (стоимость одного моля хлорида натрия в 5-10 раз меньше стоимости одного моля кислоты). Однако для обеспечения эффективности экологических показателей такой операции необходима организация утилизации отходов водоочистки, что требует дополнительных затрат и усложняет эксплуатацию водоподготовительной установки.

Более перспективен метод последовательного H-Na-катионирования, в котором природную воду пропускают через два ионообменных фильтра. Первый по ходу воды фильтр предназначен для снижения щелочности воды за счет сорбции катионов временной жесткости и трансформации бикарбонат ионов в углекислоту. Он загружается слабокислотным катионитом и регенерируется стехиометрическим количеством кислоты. Во втором по ходу воды фильтре осуществляется традиционное Na-катионирование воды с применением сульфокатионита. В качестве загрузки Н-фильтра используют сульфоуголь СК-1 или карбоксильный катионит КБ-4 на основе сополимера метакриловой кислоты. Рабочие емкости этих ионитов соответственно составляют 250-300 и 500-600 моль/м3.

В настоящее время использование слабокислотных катионитов в водоочистке получило широкое распространение. Это связано в первую очередь с тем, что такие катиониты (Каталог ионитов/НИИ пластмасс, М., 1994, 18 с.) характеризуются высокой рабочей емкостью при стехиометрическом расходе кислоты на регенерацию (на уровне 1600-2000 моль/м3), что обеспечивается их большой полной емкостью (3800-4400 моль/м3). Поскольку рабочая емкость карбоксильных катионитов практически на порядок превышает емкость сульфоугля, а гранулометрический состав слабокислотных катионообменников позволяет осуществлять стадию умягчения и снижения щелочности воды при линейных скоростях фильтрования до 40 м/ч, имеется возможность сокращения металлоемкости ионообменного оборудования на строящихся или реконструируемых водоподготовительных установках (ВПУ) или повышения производительности действующего оборудования. Технология умягчения воды реализуется при этом без образования дополнительных отходов, связанных с регенерацией Н-фильтров. По сравнению с методом реагентного снижения щелочности воды известкованием такое техническое решение полностью устраняет проблемы, связанные с образованием, а следовательно, переработкой или складированием шламов.

Однако данному методу также присущи и определенные недостатки. Так, остаточная щелочность воды, обработанной на Н-фильтре, составляет 0,7-1,5 моль/м3 а жесткость превышает некарбонатную жесткость исходной воды на величину остаточной щелочности. Это приводит к необходимости дополнительного применения для глубокого умягчения воды метода Na-катионирования на сульфокатионитах, а следовательно, и к образованию сточных вод, содержащих хлориды металлов в количествах, значительно превышающих количество извлекаемых ионов жесткости.

Была показана возможность решения проблемы путем использования слабокислотных катионитов (СКК), в частности метакриловых карбоксильных катионитах (пат. США № 4083782, 1978, кл. С 02 В 1/76, пат. США № 3493498, 1970, кл. В 01 D 15/04). Метод основан на сорбции ионов кальция и магния натриевой формой катионообменника. Применение его для умягчения природной пресной воды с постоянной жесткостью показало, что метакриловые катиониты, на 70-96% переведенные в солевую форму с однозарядными катионами (натрия, калия, аммония), обеспечивают остаточное содержание ионов кальция и магния на уровне ниже предела определения трилонометрнческим методом (1-2 ммоль/м3).

Неоднократно предпринимались попытки создания технологий, позволяющих с применением карбоксильных катионитов уменьшить жесткость умягченной воды, снизить ее солесодержание, однако практически до настоящего времени не удалось добиться глубокого умягчения воды с одновременным снижением щелочности, в связи с чем сохраняется необходимость дополнительной обработки воды традиционными методами, что сопровождается образованием сточных вод с высоким солесодержанием. При этом щелочность воды при такой обработке не только не уменьшается, но и возрастает за счет связывания растворенной углекислоты. (Об этом свидетельствует повышение величины рН в процессе умягчения.)

Среди слабокислотных катионитов весьма перспективно использование акриловых катионитов. Для обеспечения заданной остаточной щелочности фильтрата в случае применения акриловых катионитов необходима меньшая степень перевода катионита в натриевую форму, чем при использовании метакриловых сорбентов. Это обстоятельство выгодно отличает акриловые катионообменники, поскольку с возрастанием доли обменных центров в кислой форме возрастает и рабочая емкость ионита, используемая для понижения щелочности воды. При этом использование смешанной кислотно-солевой формы акриловых и метакриловых катионитов позволяет осуществлять регулируемое изменение щелочности при умягчении воды.

Рабочий цикл СКК при умягчении воды схематически можно представить следующим образом. Поскольку раствор кислоты при регенерации слоя в параллельнопоточном ионообменном аппарате пропускают в том же направлении, что и умягчаемую воду, верхняя часть слоя катионообменника полностью освобождается от поглощаемых из воды двухзарядных катионов кальция и магния.

После регенерации кислотой катионит частично переводят в натриевую форму раствором щелочи, пропускаемом в противоположном направлении. Поэтому верхняя часть ионита перед рабочим циклом умягчения воды находится в смешанной кислотно-солевой форме с однозарядными катионами натрия. Нижняя часть слоя, контактирующая с умягченной водой, выходящей из ионообменного аппарата, находится в смешанной кислотно-солевой форме с двухзарядными катионами из-за не полной регенерации катионита кислотой и лишь частичного перевода катионообменника в натриевую форму в ходе его обработки едким натром

Наиболее перспективными из слабокислотных катионитов, т.е. обладающих высокой обменной емкостью (до 2500 г-экв/м3) и способных практически полностью утилизировать кислоту из сбросных засоленных сточных вод (С.П.Высоцкий, Е.В.Поддубная. Химия и технология воды, 2002, т.24, № 2, с.167-173) являются такие катиониты, как КБ-2, Гранион Д-113, С-104. Их использование в водородно-натриевой форме позволяет снизить сброс засоленных сточных вод в 3-4 раза и обеспечить усредненный проскок катионов жесткости в фильтрат – 10-20 г-экв/м3.

Важнейшим элементом, определяющим эффективность работы катионита, является особенность формирования водородно-натриевой формы в ходе регенерации отработанных СКК.

Способ применяется в основном для полифункциональных катионитов, содержащих как сильнокислотные, так и слабокислотные группы (примером такого катионита является сульфоуголь). Образование натриевой формы при этом происходит за счет обмена ионов натрия как с ионами водорода сильнокислотных сульфогрупп катионита, так и ионами кальция и магния, оставшимися в катионите после кислотной обработки. Оптимальная концентрация соли при регенерации составляет 5-8% (массовых).

Однако для СКК применение этой технологии не дает положительного результата, т.к. для насыщения катионитов этого типа ионами натрия в количестве, соответствующем 13-15% от величины обменной емкости, необходимы удельные расходы соли, в 10-15 раз превышающие нормы, установленные для натрий-катионитовых фильтров первой ступени с загрузкой из сульфоугля. (Это объясняется, как показали проведенные авторами эксперименты, крайне малой степенью диссоциации ионогенных функциональных групп карбоксильных полиакриловых катионитов в нейтральных средах, вследствие чего обмен ионов водорода на ионы натрия из раствора поваренной соли происходит в незначительной степени.)

3.

Однако данный способ, являющийся ближайшим к заявленному аналогом по достигаемому эффекту, имеет ряд недостатков. Так, при стехиометрическом расходе кислоты на обработку катионита часть ионов жесткости остается в нижних слоях загрузки фильтра и при последующей его обработке раствором щелочи в направлении снизу вверх возникает опасность образования в фазе смолы труднорастворимых гидроокисей кальция и магния. Для полной регенерации катионита от ионов жесткости необходим избыток кислоты по сравнению со стехиометрическим в 1,05-1,10 раза. Поэтому в этом случае 5-10% кислоты попадает в сточные воды. Кроме того, данный способ может быть реализован на практике только в том случае, если в составе установки имеются фильтры с анионитами, а также оборудование для хранения, приготовления и подачи растворов щелочей, что невозможно на большинстве котельных и ТЭС с котлами малого и среднего давления.

Задачей, решаемой авторами, являлось нахождение условий регенерации СКК, в которых использование для регенерации растворов хлористого натрия вместо щелочи было бы целесообразно и экономически эффективно.

Было выяснено, что поставленная задача решается проведением регенерации отработанных СКК в 2 этапа: сначала обработка загрузок ведется стехиометрическим количеством кислоты до достижения на выходе из фильтра рН 3.9-4.2, а затем 1.0-1.5 мас.% раствором хлористого натрия.

Существенными отличиями заявляемого способа от известных является то, что авторами было установлено, что достижение в ходе обработки кислотой такого рН свидетельствует, что в катионите произошла замена на Н-группу 85-88% поглощенных ионов кальция и магния, в том числе практически весь магний.

Одновременно создается область рН, в которой ионогенные функциональные группы слабокислотных полиакриловых катионитов в кальциевой и магниевой формах обладают достаточно высокой степенью диссоциации и способны к обмену на катионы натрия. Так как лимитирующей стадией этого процесса является внутридиффузионная кинетика обмена ионов в зерне, то это позволяет на практике уменьшить концентрацию, а следовательно и удельный расход соли на регенерацию.

В результате оставшееся после кислотной обработки количество ионов жесткости удаляется из загрузок раствором хлористого натрия с концентрацией 1.0-1.5 мас.%. Эти величины находятся за пределами нижней границы применяемых в практике водоподготовки концентраций реагентов (Дегтярев Б.В., Игнатов Ю.И. Оптимизация регенерации сульфоуглей натрий-катионитовых фильтров, Теплоэнергетика, № 7, 1986, стр.40-41) и ранее не рассматривались. Достигнутый в результате удельный расход соли является вполне приемлемым и примерно в 1.5 раза меньше, чем нормируется для натрий-катионитовых фильтров второй ступени.

Как показали проведенные эксперименты, использование заявляемого способа при регенерации СКК позволяет:

– сформировать оптимальную степень трансформации водородно-натриевой формы ионообменника при удельных расходах кислоты 1 г-экв/г-экв и поваренной соли в пределах 270-290 г/г-экв;

– гарантировать отсутствие сильных кислот как в промывных водах при регенерации, так и в обрабатываемой воде;

– получить глубокоумягченную воду, содержащую ионы жесткости в концентрации 5-10 мкг-экв/л и имеющую остаточную щелочность в среднем 0.6-0.8 мг-экв/л;

– по крайней мере в 1.5-2 раза сократить расход поваренной соли и снизить объем сточных вод.

Промышленная применимость способа иллюстрируется следующими примерами.

Пример 1. Обоснование величины концентрации раствора хлористого натрия при регенерации.

В лабораторных условиях определена зависимость степени удаления ионов жесткости из частично отработанного катионита от концентрации раствора хлористого натрия на примере катионита Гранион Д-113.

Условия испытаний: объем загрузки 100 см3; диапазон концентрации NaCl от 8 до 0.5% (массовых), скорость пропускания раствора 3-4 м/ч. Результаты испытаний представлены в таблице 1.

Таблица 1
Влияние величины концентрации раствора хлористого натрия на эффективность регенерации СКК Гранион-Д-113.
Концентрация NaCl, мас.% 8,0 5,0 2,0 1,0 0,5
Удельный расход NaCl, г/г-экв 1170 820 320 230 170
Степень регенерации, % 97,4 96,2 95,6 95,0 84,2

Из полученных данных следует, что для регенерации катионита достаточно использовать раствор хлористого натрия с концентрацией 1%. При этом степень регенерации катионита составляет 95%, а удельный расход соли – 230 г/г-экв.

Пример 2. Исследование работоспособности и эффективности предлагаемого способа регенерации отработанных СКК.

В лабораторных условиях были выполнены экспериментальные исследования по определению эффективности работы некоторых слабокислотных карбоксильных катионитов, регенерируемых по предлагаемому способу.

Методика испытаний заключалась в определении динамической обменной емкости (ДОЕ) катионитов и качества фильтрата при умягчении воды. Затем образцы катионитов регенерировались по предлагаемому способу и определение ДОЕ повторялось. Условия испытаний: объем загрузки 100 см3, концентрация ионов жесткости в исходной воде (С0 ж) 3,02-5,8 мг-экв/л, карбонатная щелочность исходной воды (Щ0 к) 2,57-4,95 мг-эв/л, объемная скорость фильтрования 2,0 л/ч. В фильтрате контролировались значения остаточной жесткости (Сф ж) и карбонатной щелочности (Щф к). Объектами исследования являлись образцы промышленных катионитов КБ-2-4, С-105, Гранион Д-113. Полученные результаты представлены в таблице 2.

Таблица 2
Влияние условий регенерации на работоспособность и эффективность СКК
Марка катионита Доля водородной формы, % № регенерации Исходная вода Фильтрат ДОЕ, мг-экв/л
С0 ж, мг-экв/л Щ0 к, мг-экв/л Сф ж, мкг-экв/л ЩФ к, мг-экв/л
КБ-2-4 88,0 1 3,25 2,75 5 1,10 700
89,0 2 3,28 2,80 5 1,12 710
86,5 3 3,02 2,56 5 1,28 730
С-105 88,5 1 3,18 2,65 5 0,94 970
86,0 2 4,90 3,95 5 1,10 1040
85,0 3 4,95 3,80 5 1,14 1110
Гранион-Д-113 92,0 1 3,26 2,70 5 0,47 980
89,4 2 3,23 2,61 5 0,57 1200
84,9 3 5,07 4,00 5 0,90 1370
86,0 4 5,80 4,20 5 1,32 1140
89,4 5 3,16 2,57 5 0,65 1170

Пример 3. Предлагаемый способ регенерации был апробирован на катионите Гранион Д-113 в натурных условиях в 2 фильтрах ФИПа 1-2,0-0,6 водоумягчительной установки Кировской ТЭЦ-1.

Указанные фильтры работали в цикле совместного H-Na катионирования при следующих условиях: расход воды через фильтры от 64 до 77 м3/г, концентрация ионов жесткости в исходной воде 2,94-3,18 мг-экв/л, величина карбонатной щелочности исходной воды 2,10-2,33 мг-экв/л. Высоты загрузок в фильтрах составляли 0,98 м и 1,11 м.

Регенерация фильтров проводилась сначала раствором серной кислоты 0.3-0.5% концентрации до достижения на выходе рН 3.9-4.2, а затем растворами хлористого натрия различной концентрации по предлагаемому способу. Полученные результаты представлены в таблицах 3 и 4.

Таблица 3
Влияние концентрации хлористого натрия при регенерации на его расходные показатели (выбор оптимальной концентрации) при регенерации СКК Гранион Д-113 в промышленных условиях.
Средняя концентрация NaCl в процессе регенерации, мас.% 2,28 1,96 1,32 1,19
Удельный расход NaCl, г/г-экв. 350 314 250 245
Таблица 4
Влияние условий регенерации на эффективность очистки воды на СКК Гранион Д-113
№ ф-ра № регенерации Условия регенерации Удельные расходы, г/г-экв Качество фильтрата ДОЕ, г-экв/м3
рН Ст. регенерации кислотой, % Конц. NaCl, % H2SO4 NaCl Cф ж мкг-экв/л Щф к г-экв/м3
2 1 3.9 88.4 1.19 49 245 7.3 0.58 1674
2 4.2 87.8 1.32 49 250 7.0 0.69 1968
3 1 4.15 87.2 2.28 49 350 6.2 0.77 1272
2 3.95 88.3 1.96 49 314 10.0 0.84 2013

Как следует из приведенных примеров, предлагаемый способ регенерации слабокислотных карбоксильных катионитов позволяет обеспечить глубокое умягчение и эффективное разрушение щелочности природных вод, гарантирует отсутствие сильных кислот в обрабатываемой воде как в рабочем цикле эксплуатации фильтров, так и в промывных (сточных) водах. Следует отметить также повышенную экологическую безопасность предлагаемого способа по сравнению с традиционной технологией регенерации Na-катионитовых фильтров. Применение в качестве регенерирующего агента раствора хлористого натрия с концентрацией 1-1,5% в 6-8 раз уменьшает количество хлористых солей в сточных водах водоумягчительных установок.

Формула изобретения

Способ регенерации слабокислотных карбоксильных катионитов с переводом их в водородо-натриевую форму путем пропускания через их слой последовательно кислоты в стехиометрическом соотношении и Na-ион содержащего реагента, отличающийся тем, что обработку катионита кислотой проводят до достижения на выходе рН 3,9-4,2, а в качестве Na-ион содержащего реагента используют 1,0-1,5% раствор хлористого натрия.


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 27.02.2007

Извещение опубликовано: 20.02.2008 БИ: 05/2008


NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 20.02.2008

Извещение опубликовано: 20.02.2008 БИ: 05/2008


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 27.02.2008

Извещение опубликовано: 20.09.2009 БИ: 26/2009


NF4A Восстановление действия патента

Дата, с которой действие патента восстановлено: 20.01.2011

Дата публикации: 20.01.2011


Categories: BD_2257000-2257999