Патент на изобретение №2256941

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2256941 (13) C1
(51) МПК 7
G01V3/17, G01S13/88
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 18.01.2011 – прекратил действие

(21), (22) Заявка: 2004117944/28, 16.06.2004

(24) Дата начала отсчета срока действия патента:

16.06.2004

(45) Опубликовано: 20.07.2005

(56) Список документов, цитированных в отчете о
поиске:
RU 2207588 C2, 27.06.2003. SU 1810859 A1, 23.04.1993. RU 2202812 C1, 19.03.2002. US 6252538 B1, 26.06.2001. US 4905008 A, 27.02.1990.

Адрес для переписки:

119048, Москва, ул. Усачева, 35, ЗАО НИИИН МНПО “Спектр”, В.Г. Запускалову

(72) Автор(ы):

Маслов А.И. (RU),
Запускалов В.Г. (RU),
Артемьев Б.В. (RU),
Мартынов С.А. (RU),
Волчков Ю.Е. (RU)

(73) Патентообладатель(и):

Закрытое акционерное общество Научно-исследовательский институт интроскопии Московского научно-производственного объединения “Спектр” (RU)

(54) МОБИЛЬНЫЙ ГЕОРАДАР ДЛЯ ДИСТАНЦИОННОГО ПОИСКА МЕСТОПОЛОЖЕНИЯ ПОДЗЕМНЫХ МАГИСТРАЛЬНЫХ КОММУНИКАЦИЙ И ОПРЕДЕЛЕНИЯ ИХ ПОПЕРЕЧНОГО РАЗМЕРА И ГЛУБИНЫ ЗАЛЕГАНИЯ В ГРУНТЕ

(57) Реферат:

Изобретение относится к области контрольно-измерительной техники, в частности к радиолокационным методам и средствам неразрушающего контроля, позволяющим дистанционно осуществлять поиск траектории прокладки трасс действующих и вновь создаваемых подземных магистральных трубопроводящих коммуникаций, определять их поперечный размер и глубину залегания трасс в грунте. Сущность: антенны георадара выполнены в виде коллимирующих решеток, шарнирно закрепленных снаружи, например, на днище фюзеляжа летательного аппарата с возможностью синхронного качания каждой антенны в плоскости поперечного сечения фюзеляжа на угол 1…5°. Антенны сфокусированы в сторону поверхности земли. Длительность зондирующих электромагнитных импульсов фиксирована в пределах диапазона 10…0,2 нс. Технический результат: расширение функциональных возможностей, высокая помехозащищенность и качество изображения. 1 ил.

Изобретение относится к области контрольно-измерительной техники, в частности к радиолокационным методам и средствам неразрушающего контроля, позволяющим дистанционно, например с летательного аппарата, осуществлять поиск траектории прокладки трасс действующих магистральных подземных трубопроводящих коммуникаций (нефтегазопроводы, оптоволоконные и металлические кабели) из металлических и неметаллических материалов, определять их поперечный размер и глубину залегания трасс в грунте, а также при обновлении новых планов подземных коммуникаций.

Известны мобильные георадары для дистанционного определения траектории прокладки трассы нефтегазопровода и глубины его залегания в грунте, основанные на тепловизионном методе контроля путем обнаружения утечек летучих фракций углеводородов, содержащие летательный аппарат, цифровую видеокамеру, оптическую систему стабилизации изображения и его синхронизации с тепловизионным каналом, преобразующую часть с процессором и тепловизионный регистратор [см. В.В.Коннов. Тепловизионный мониторинг нефтегазопроводов с применением мотодельтоплана. 3-я Международная выставка и конференция “Неразрушающий контроль и техническая диагностика в промышленности” / Тезисы докладов. М. Россия: 17-18 марта 2004. С.167, патенты РФ №№2202812, 2206106, кл. G 01 V 3/12].

Эти георадары обладают дистанционностью контроля, высокими чувствительностью, оперативностью и надежностью контроля. В то же время георадары функционально ограничены тем, что не позволяют эффективно использовать их для целей обнаружения траектории трассы, так как утечки углеводородов не бывают сплошными вдоль трубопровода, а возможны только в дефектных местах трубопровода, но и в этих случаях точность определения трассы недостаточная, поскольку при наличии ветра углеводороды рассеиваются по поверхности, где проложен нефтегазопровод, и истинные координаты трассы выявить затруднительно.

Наиболее близким техническим решением к заявляемому представляется мобильный георадар, включающий магнитную антенну, выполненную в виде колебательного контура, вторичный преобразователь, включающий дифференциальный усилитель с двумя конденсаторами, включенными одними электродами к выходу колебательного контура, другими электродами соответственно к инвертирующему и неинвертирующему входам усилителя, и регистратор [Патент РФ №1287080, кл. G 01 V 3/08, БИ №4, 1987].

Этот георадар обладает удовлетворительной точностью за счет подавления помехонесущих электромагнитных сигналов, наводимых в магнитной антенне переменными электромагнитными полями, излучаемыми промышленными объектами, но не устраняет влияние электромагнитных полей поверхности земли, имеющих другой частотный спектр. Кроме того, функциональные возможности ограничены, а помехозащитные элементы георадара заметно уменьшают его разрешающую способность.

Сущность изобретения заключается в том, что в мобильном георадаре для дистанционного поиска местоположения подземных магистральных коммуникаций и определения их поперечного размера и глубины залегания в грунте, содержащем летательный аппарат, передающую и принимающую антенны высокочастотных электромагнитных импульсов, высокочастотный генератор импульсов, процессор с программным обеспечением и монитор, антенны выполнены в виде коллимирующих решеток, шарнирно закрепленных снаружи, например, на днище фюзеляжа летательного аппарата с возможностью синхронного качания каждой антенны в плоскости поперечного сечения фюзеляжа на угол 1…5° относительно вертикали и независимо от крена летательного аппарата и сфокусированных в сторону поверхности земли, при этом длительность зондирующих электромагнитных импульсов фиксирована и назначается в пределах диапазона 10…0,2 не, а данные зависимости контрастности от электрофизических свойств фракций грунтов и материалов трубопроводных коммуникаций введены в программное обеспечение процессора.

Положительным результатом изобретения являются расширенные функциональные возможности (одновременно поиск трассы трубопровода, определение его поперечного размера и глубины залегания в грунте), высокая помехозащищенность и качество изображения на видеомониторе, вследствие выбранных параметров зондирующих импульсов, синхронизации сканирования антенн, наличия базы данных, хранящейся в памяти процессора, зависимости контрастности от электрофизических свойств фракций грунтов.

На чертеже приведен топографо-геодезический фрагмент взаимного расположения мобильного георадара и подземной трассы магистрали.

Мобильный георадар содержит летательный аппарат 1, передающую и принимающую антенны 2 и 3 высокочастотных электромагнитных импульсов, высокочастотный генератор, процессор с программным обеспечением и видеомонитор (последние на чертеже не показаны и размещены в салоне летательного аппарата).

Антенны 2 и 3 выполнены в виде коллимирующих решеток, шарнирно закрепленных снаружи на днище фюзеляжа летательного аппарата с возможностью синхронного качания каждой антенны 2, 3 в плоскости поперечного сечения фюзеляжа на угол 1…5° относительно вертикали и независимо от крена летательного аппарата и сфокусированных в сторону поверхности земли. Коллимирование антенных решеток позволяет сформировать необходимую апертуру излучаемого и отраженного электромагнитного пучка.

Длительность зондирующих электромагнитных импульсов фиксирована, величина которой назначается в пределах диапазона 10…0,2 нc и выбирается в зависимости от реальной геологии и типа фракций насыпного грунта, материала трубопровода и базы данных зависимости контрастности от электрофизических свойств фракций насыпного грунта, внесенной в память процессора. Максимальное количество точек в каждой реализации – 2048, минимальное время между выборками – 2,5 нc, максимальное – 1 нc.

Необходимо отметить, что фракции засыпных грунтов в канал, по которому проложена трасса, как правило, малогабаритные (песок, торф, легкие суглинки, супеси) по сравнению с поперечными размерами протяженных трубопроводов, а крупные фракции типа камней, булыжников при засыпке канала не используют.

Высокочастотный генератор предназначен для излучения коротких высокочастотных импульсов в грунт земли через воздушное пространство посредством передающей антенны 2. Отраженные высокочастотные импульсы от поверхности земли и границ раздела фракций и других предметов, находящихся в грунте, принимаются антенной 3.

Георадар дает пространственную информацию о геологических характеристиках просвечиваемой среды, в частности о наличии в грунте различных фракций, отличающихся друг от друга физико-электрическими свойствами, геометрической формой, глубиной залегания от поверхности грунта, о виде и состоянии грунтов в разрезе, что отражается на параметрах электромагнитных импульсов (скорости V распространения радиоволн в грунте и коэффициенте поглощения).

Используемый в георадаре радиолокационный метод контроля основан на изучении параметров излучаемых и отраженных коротких высокочастотных импульсов, т.е. по времени t запаздывании между зондирующими и отраженными импульсами, скорости V распространения радиоволн в грунте [cм/нc]:

и глубине залегания отражающего импульса:

где С – скорость света в вакууме, равная 30 см/нc;

отн – комплексная относительная диэлектрическая проницаемость, рассчитывается из выражения

где * – диэлектрическая проницаемость исследуемой среды;

0 – диэлектрическая проницаемость в вакууме.

При изучении характера распространения электромагнитных волн в грунте для случаев, когда длина волны существенно меньше глубины до отраженных границ раздела фракций в грунте, что характерно для практики, можно с известной степенью приближения физику взаимодействия электрического поля со средой моделировать на схеме конденсатора. Так как значение отн зависит, в основном, от количественного содержания влаги и минерального состава грунта, то относительная диэлектрическая проницаемость отн показывает, во сколько раз увеличивается емкость конденсатора, если вместо воздуха в него поместить данный грунт.

По степени поглощения электромагнитных волн грунты подразделяются на три группы:

– слабо поглощающие – незаселенные грунты, стекло, пески, торф (=0,3…7,0 дБ/м);

– промежуточные – легкие суглинки, супеси (=7,0…14 дБ/м);

– сильно поглощающие – глины, тяжелые суглинки, металлы (=14…26 и более дБ/м).

Отсюда следует, что с увеличением ослабления электромагнитного сигнала в грунте глубина исследования радиолокационным методом неразрушающего контроля изменяется от 25…30 м для песчаных и до 3…8 м – для глинистых пород. Но и этого минимального предела глубины (глинистых пород) достаточно для достоверного контроля параметров трубопровода, так как глубина залегания трубопроводных коммуникаций в грунте на практике не превышает 1,5…2 м.

Процессор георадара предназначен для обработки информационных параметров поступающих отраженных сигналов, их сопоставления с базой данных, введенных в программное обеспечение. Программное обеспечение состоит из двух частей: первичной (регистрация сигнала, его накопление и создание файлов) и вторичной обработки информации. Обеспечение вторичной обработки реализовано в виде пакета “Geo-data for Windows”, предоставляющего оператору следующие возможности:

– чтение данных, запоминание и индикацию в виде среза грунта или отдельных реализаций;

– выбор цветной гаммы в изображении среза грунта;

– фильтрацию данных фильтрами низких и высоких частот;

– преобразование данных (масштабирование, интерполяция, децимация и вычитание), синтез апертуры, преобразование Гильберта;

– протоколирование преобразований за сеанс работы;

– печать данных.

Поскольку данные зависимости контрастности от электрофизических свойств применяемых для засыпки каналов под трубопровод грунтов занесены в память процессора, то при сопоставлении информационных данных с базой данных имеется возможность оператору улучшать качество изображения на экране монитора путем рационального выбора длительности электромагнитного сигнала, зондирующего грунт.

Видеомонитор предназначен для визуального наблюдения за текущей информацией, исходящей из процессора.

В качестве летательного аппарата могут быть самолет, вертолет, дельтоплан, зонд и др.

Работа георадара заключается в следующем. При взлете летательного аппарата 1 включают в бортовую электрическую сеть блоки георадара, а при выходе аппарата 1 на предполагаемый топографический маршрут трассы начинают сканировать поверхность земли антеннами 2 и 3.

Зондирующие поверхность земли короткие электромагнитные импульсы, проникая через толщу грунта, отражаются обратно от поверхности земли и от границ раздела фракций, находящихся в грунте. По отраженным сигналам от поверхности земли, границ фракций среды грунта и искусственно вложенного в грунт протяженного трубопровода формируется картина профиля грунта с массивным протяженным объектом. Границы раздела фракций грунта и трубопровода отображаются на экране видеомонитора в виде яркотемных линий, а однородность среды – одним цветом ровной тональности, степень которой зависит от электрофизических свойств структуры грунта. Чем выше коэффициент поглощения, тем темнее тональность. По разности контрастности участков, их габаритам и резким яркотемным границам, высвечиваемым на экране монитора, судят о наличии трубопровода и его поперечном размере, а по времени прихода соответствующих отраженных сигналов от поверхности грунта земли и границы раздела трубопровода с фракциями грунта до антенны 3 судят о глубине залегания трубопровода в грунте.

Положительным результатом изобретения являются расширенные функциональные возможности (одновременно поиск трассы, определение ее поперечного размера и глубины залегания в грунте), высокая помехозащищенность и качество изображения на видеомониторе вследствие выбранных параметров зондирующих импульсов, синхронизации сканирования антенн и наличия базы данных, хранящейся в памяти процессора, зависимости контрастности от электрофизических свойств фракций грунтов.

Формула изобретения

Мобильный георадар для дистанционного поиска местоположения подземных магистральных коммуникаций и определения их поперечного размера и глубины залегания в грунте, содержащий летательный аппарат, передающую и принимающую антенны высокочастотных электромагнитных импульсов, высокочастотный генератор импульсов, процессор с программным обеспечением и монитор, отличающийся тем, что антенны выполнены в виде коллимирующих решеток, шарнирно закрепленных снаружи на днище фюзеляжа летательного аппарата с возможностью синхронного качания каждой антенны в плоскости поперечного сечения фюзеляжа на угол 1 – 5° относительно вертикали и независимо от крена летательного аппарата и сфокусированных в сторону поверхности земли, при этом длительность зондирующих электромагнитных импульсов фиксирована и назначается в пределах диапазона 10 – 0,2 нс, а данные зависимости контрастности от электрофизических свойств фракций грунтов и материалов трубопроводных коммуникаций введены в программное обеспечение процессора.

РИСУНКИ


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 17.06.2006

Извещение опубликовано: 10.06.2007 БИ: 16/2007


Categories: BD_2256000-2256999