Патент на изобретение №2256862

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2256862 (13) C2
(51) МПК 7
F28D15/02
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 18.01.2011 – может прекратить свое действие

(21), (22) Заявка: 2003123564/06, 24.07.2003

(24) Дата начала отсчета срока действия патента:

24.07.2003

(43) Дата публикации заявки: 27.01.2005

(45) Опубликовано: 20.07.2005

(56) Список документов, цитированных в отчете о
поиске:
SU 1196665 A1, 07.12.1985. SU 827951 A, 07.05.1981. SU 646181 А, 08.02.1979. SU 641262 А, 07.01.1979. US 3682239 А, 08.08.1972.

Адрес для переписки:

662972, Красноярский край, г. Железногорск, ул. Ленина, 52, ЗАТО Железногорск, Р.П. Туркеничу

(72) Автор(ы):

Деревянко В.А. (RU),
Косенко В.Е. (RU),
Чеботарев В.Е. (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие “Научно-производственное объединение прикладной механики им. акад. М.Ф. Решетнева” (RU)

(54) ТЕПЛОВАЯ ТРУБА

(57) Реферат:

Изобретение предназначено для теплопередачи и теплорегулирования и может быть использовано в теплотехнике. Тепловая труба содержит связанные паропроводом и конденсатопроводом испаритель, имеющий капиллярно-пористую насадку, и конденсатор. Насадка выполнена из электроизоляционного материала, например керамики, а с внутренней стороны насадки установлен сетчатый электрод, связанный со стержневым электродом, установленным в герметичном изоляторе на торцевой части испарителя. Изобретение обеспечивает увеличение тепловой мощности и длины тепловой трубы, регулирование тепловой мощности. 1 ил.

Изобретение относится к области теплотехники и может быть использовано в устройствах теплопередачи и теплорегулирования.

В последнее время во многих странах разрабатываются так называемые тепловые трубы (ТТ), которые являются эффективно действующими теплоотводами. Известно, что в тепловых трубах имеет место, главным образом, не обычная теплопроводность, которая относительно мала, а гидравлический перенос тепла при двух противоположных друг другу фазовых превращениях. Насосом, который обеспечивает циркуляцию как жидкого, так и парообразного теплоносителя, является фитиль, от его геометрических, теплофизических и гидравлических характеристик зависит теплопередающая способность тепловой трубы. Сюда, в первую очередь, следует отнести такие параметры, как теплопроводность каркаса фитиля, его пористость, распределение пор по радиусам, проницаемость для рабочей жидкости. Эта способность не в меньшей степени зависит от характеристик и самого теплоносителя: давления насыщенного пара, теплоты испарения, вязкости, плотности жидкости и пара, теплопроводности, поверхностного натяжения, смачивания им твердых стенок капиллярных каналов фитиля. Все эти параметры зависят от температуры и изменяются вместе с тепловой нагрузкой на тепловую трубу.

Основное (гидравлическое) уравнение тепловой трубы без учета изменения количества движения и гравитационного воздействия на течение пара ввиду его малой плотности, может быть представлено в виде:

PMAX Pg+ Pж+ Pп (1),

где Pmax – максимальный капиллярный напор (абсолютная величина разности капиллярных давлений), которую может создавать фитиль данной тепловой трубы на данном теплоносителе при данной температуре, Pg – разность гидростатических давлений жидкости в порах фитиля между концами тепловой трубы, Рж – гидравлическое сопротивление (потери на трение) при движении жидкости по фитилю, Рп – гидравлическое сопротивление при движении пара в паровом канале.

В стационарно работающей тепловой трубе всегда сумма потерь давлений равна разности капиллярных давлений Р, которая обязательно в данном случае и создает фитиль, то есть:

P= Pg+ Pж+ Pп. (2)

При увеличении тепловой нагрузки на тепловую трубу температура повышается, сила поверхностного натяжения, а следовательно, и Pmax уменьшаются, а потери по пару и жидкости Р при этом возрастают и стремятся к своему максимальному значению Pmax. Когда Р= Рmах, дальнейшее увеличение нагрузки становится невозможным.

Значительное увеличение длины классической тепловой трубы даже при работе в горизонтальном положении наталкивается на определенные трудности, связанные, с одной стороны, с увеличением потерь как по пару, так и по жидкости, что снижает предельную мощность, а с другой – с изготовлением и монтажом длинных фитилей, особенно в том случае, если тепловая труба имеет изгибы корпуса.

Для увеличения длины классической тепловой трубы и снижения гидравлического сопротивления используют тепловые трубы с раздельными каналами пара и жидкости и локализованной пористой структурой, выполняющей роль капиллярного насоса. Конструкция такой трубы описана в авторском свидетельстве №1196665, которая выбрана в качестве прототипа.

Однако и в этой конструкции сохраняются недостатки, присущие тепловым трубам с пористыми капиллярными насосами, а именно:

– тепловая мощность и длина трубы ограничены максимальной величиной капиллярного напора Рmах;

– величина капиллярного напора существенно зависит от смачиваемости поверхности пористой структуры и сил поверхностного натяжения, что создает значительные трудности при изготовлении, при подготовке поверхности и выборе и подготовке теплоносителя;

– отсутствует возможность регулирования тепловой мощности.

Поставленная задача решается тем, что тепловая труба содержит связанные паропроводом и конденсатопроводом испаритель, имеющий капиллярно-пористую насадку, и конденсатор, при этом насадка выполнена из электроизоляционного материала, например керамики, а с внутренней стороны насадки установлен сетчатый электрод, связанный со стержневым электродом, установленным в герметичном изоляторе на торцевой части испарителя.

Суть изобретения поясняется чертежом, где изображен общий вид предлагаемого устройства.

Тепловая труба с электрическим управлением тепловой мощностью содержит соединенные паропроводом 1 и конденсатопроводом 2 испаритель 3 с керамической, не проводящей электрический ток, капилярно-пористой насадкой 4, снабженной пароотводными каналами 5, и конденсатор 6, выполненный, например, в виде соосно установленных один в другом цилиндров с образованием кольцевой полости 7, причем пароотводные каналы 5 выполнены в виде кольцевых и продольных проточек, расположенных на наружной поверхности насадки 4 и сообщающихся с кольцевым паровым коллектором 8. На внутренней поверхности насадки расположен цилиндрический сетчатый электрод 9, электрически изолированный от корпуса испарителя 3 и присоединенный через герметичный изолятор 10 к электроду 11.

Тепловая труба работает следующим образом. При подводе тепловой нагрузки к испарителю 3 возникает разность температур и давлений между паром в пароотводных каналах 5 с одной стороны, и жидкостью в центральной полости насадки 4, с другой стороны. Под действием разности давлений теплоноситель вытесняется из кольцевой области 7 конденсатора 6 и заполняет свободную часть конденсатопровода 2 и центральный канал насадки 4. Теплоноситель, поступающий к насадке 4, движется в зону испарения преимущественно в радиальном направлении. Испарение его происходит с поверхности капиллярно-пористых элементов, плотно прилегающих к поверхности испарителя 3. Образующийся пар по кольцевым и продольным проточкам поступает в паровой коллектор 8, а из него по паропроводу 1 в конденсатор 6, где конденсируется и охлаждается до температуры приемника тепла. Под действием разности давлений образующийся конденсат возвращается в испаритель, замыкая рабочий цикл тепловой трубы.

При отсутствии электрического напряжения между корпусом трубы и электродом 11 работа тепловой трубы не отличается от описанной в прототипе. При подаче напряжения на электрод 11 электрокинетический насос, образованный корпусом испарителя 3, пористой насадкой 4 и сетчатым электродом 9, создает дополнительный перепад давления жидкости, который увеличивает имеющийся капиллярный напор. Увеличение суммарного напора жидкости позволяет увеличить длину и тепловую мощность трубы. Т.к. работа электрокинетического насоса не зависит от смачиваемости пористой насадки 4, требования к качеству ее изготовления и подготовки значительно снижаются. Кроме того, возможность изменения напряжения, подведенного к электроду 11, позволяет не только регулировать величину напора жидкости и тем самым тепловую мощность трубы, но и, изменяя полярность напряжения, добиться полного прекращения передачи тепловой мощности (режим запирания).

Таким образом, введение в конструкцию электрокинетического насоса позволяет:

– увеличить тепловую мощность и длину тепловой трубы;

– снизить требования к пористой насадке и подготовке теплоносителя;

– осуществить режим регулировки тепловой мощности и, тем самым, добиться достижения поставленной цели.

Из известных заявителю источников информации не обнаружена совокупность признаков, сходная с совокупностью признаков заявляемого объекта.

Формула изобретения

Тепловая труба, содержащая связанные паропроводом и конденсатопроводом испаритель, имеющий капиллярно-пористую насадку, и конденсатор, отличающаяся тем, что насадка выполнена из электроизоляционного материала, например керамики, а с внутренней стороны насадки установлен сетчатый электрод, связанный со стержневым электродом, установленным в герметичном изоляторе на торцевой части испарителя.

РИСУНКИ

Categories: BD_2256000-2256999