Патент на изобретение №2255988
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ
(57) Реферат:
Изобретение относится к области металлургии, конкретнее к технологии изготовления стальных холоднокатаных листов с высокими вытяжными свойствами для холодной штамповки деталей кузовов легковых автомобилей. Техническая задача, решаемая изобретением, состоит в повышении качества холоднокатаной листовой стали. Проводят горячую прокатку непрерывнолитых слябов из малоуглеродистых сталей, травление, многопроходную холодную прокатку с суммарным относительным обжатием не менее 75%, рекристаллизационный отжиг по режиму: нагрев со средней скоростью 70-80°С/ч до температуры 490-510°С, повторный нагрев со средней скоростью 3-4°С/ч до промежуточной температуры 540-560°С и окончательный нагрев со средней скоростью 50-55°С/ч до температуры отжига 700-720°С, при которой рулоны выдерживают в течение 12-18 ч. По окончании выдержки при температуре отжига рулоны охлаждают со скоростью 19-21°С/ч до температуры не выше 690°С, причем непрерывнолитые слябы из малоуглеродистой стали имеют следующий химический состав, мас.%: 0,025-0,050 углерода, 0,003-0,010 кремния, 0,12-0,19 марганца, 0,02-0,05 алюминия, не более 0,011 азота, остальное железо и примеси. 2 з.п. ф-лы, 3 табл.
Изобретение относится к области металлургии, конкретнее к технологии изготовления стальных холоднокатаных листов с высокими вытяжными свойствами для холодной штамповки деталей кузовов легковых автомобилей. Технологические свойства готового холоднокатаного листа, т.е. способность принимать требуемую форму в результате вытяжки, не теряя устойчивости в штампах, а также состояние поверхности лицевых деталей зависят от степени ликвации и сегрегации химических элементов, газонасыщенности, содержания неметаллических включений и плен. Поэтому в автомобилестроении используют холоднокатаную листовую сталь с механическими свойствами, соответствующими категории ВОСВ (ГОСТ 9045) и 1-й группой отделки поверхности. Кроме прочностных и пластических свойств холоднокатаная листовая сталь должна обладать высокими значениями нормальной пластической анизотропии R и показателем деформационного упрочнения n. Известен способ производства холоднокатаной листовой стали, стабилизированной алюминием. Способ включает непрерывную разливку в слябы стали следующего химического состава, мас.%: Углерод не более 0,10 Марганец не более 0,60 Азот 0,0030-0,0100 Фосфор не более 0,008 Сера не более 0,008 Железо остальное Слябы нагревают до температуры 950-1200° С, прокатывают при температуре выше точки Аr3 и сматывают полосы в рулоны при температуре не выше 600° С. Горячекатаные полосы подвергают травлению и прокатывают на стане холодной прокатки с обжатием 70-80%. Холоднокатаные полосы нагревают со средней скоростью не более 100° С/ч до температуры 800° С в колпаковых печах и производят их отжиг. Отожженные полосы дрессируют [1]. Недостатки известного способа состоят в низкой штампуемости холоднокатаных листов, в наличии на их поверхности мелких плен. Это ухудшает качество холоднокатаной листовой стали. Известен также способ производства холоднокатаной листовой стали, по которому стальной сляб с содержанием углерода 0,008% по массе нагревают и прокатывают на непрерывном широкополосном стане горячей прокатки в полосу. Горячекатаную полосу после травления подвергают холодной прокатке до толщины 0,7-0,8 мм. Затем холоднокатаную полосу отжигают в проходной печи при температуре 700-900° С в течение 3-5 мин [2]. Недостатки данного способа также состоят в том, что из-за неоптимальных параметров микроструктуры и наличия в ней неметаллических включений готовые холоднокатаные листы имеют низкое качество. Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства листовой стали для холодной штамповки (автомобильный лист), включающий выплавку и непрерывную разливку в слябы марки 08Ю следующего химического состава, мас.%: Углерод не более 0,07 Марганец 0,25-0,35 Кремний 0,01 Фосфор не более 0,020 Сера не более 0,025 Никель не более 0,06 Медь не более 0,06 Хром не более 0,03 Железо остальное Непрерывнолитые слябы подвергают горячей прокатке в полосы. Горячекатаные полосы подвергают травлению и многопроходной холодной прокатке до требуемой толщины. Затем холоднокатаные полосы в рулонах отжигают при температуре 680-690° С в течение 30-40 ч и дрессируют с обжатием 1,0-1,5% [3] – прототип. Недостатки известного способа состоят в следующем. Азот и кислород, поступающие к металлу из атмосферы и от фурм при выплавке стали, образуют в ней неметаллические включения типа: FeO, SiO2, MnO, 2FeO· SiO2, 2MnO· SiO2, FеО· Аl2О3, МnО· Аl2О3, 3Аl2О3· 2SiO2, 3МnО· Аl2O3· 2SiO2 и др. Неметаллические включения являются причиной образования плен, надрывов, расслоений, разрывов, дыр и других дефектов холоднокатаного металла. Помимо этого, они снижают его штампуемость. Все это приводит к снижению качества холоднокатаной листовой стали. Техническая задача, решаемая изобретением, состоит в повышении качества холоднокатаной листовой стали. Указанная техническая задача решается тем, что в известном способе производства холоднокатаной листовой стали для глубокой вытяжки, включающем горячую прокатку непрерывнолитых слябов из малоуглеродистой стали, травление, многопроходную холодную прокатку, рекристаллизационный отжиг рулонов в колпаковой печи с нагревом за несколько стадий, выдержкой, охлаждением и дрессировку, согласно предложенному изобретению многопроходную холодную прокатку ведут с суммарным относительным обжатием не менее 75%, а рекристаллизационный отжиг осуществляют по режиму: нагрев со средней скоростью 70-80° С/ч до температуры 490-510° С, повторный нагрев со средней скоростью 3-4° С/ч до промежуточной температуры 540-560° С и окончательный нагрев со средней скоростью 50-55° С/ч до температуры отжига 700-720° С, при которой рулоны выдерживают в течение 12-18 ч. По окончании выдержки при температуре отжига рулоны охлаждают со скоростью 19-21° С/ч до температуры не выше 690° С. Кроме того, непрерывнолитые слябы из малоуглеродистой стали имеют следующий химический состав, мас.%: Углерод 0,025-0,050 Кремний 0,003-0,01 Марганец 0,12-0,19 Алюминий 0,02-0,05 Азот не более 0,011 Железо и примеси Остальное Сущность изобретения состоит в следующем. Наличие неметаллических включений и высокие вытяжные свойства холоднокатаной листовой стали для штамповки изделий сложной формы закладываются на стадиях выплавки и разливки. В процессе непрерывной разливки стали предложенного состава формируется литой сляб с минимальной ликвацией углерода и отсутствием сегрегации неметаллических включений в осевой части слитка. Это позволяет сформировать в процессе горячей, холодной прокатки и рекристаллизационного отжига равномерную микроструктуру, в которой ферритная матрица очищена от карбидов, а неметаллические включения рассредоточены по всему объему металла. При холодной прокатке горячекатаных полос с обжатием не менее 75% достигается заданная толщина полос и степень измельчения деформированных ферритных зерен, а также неметаллических включений в стали. В результате рекристаллизационного отжига холоднокатаных полос со степенью наклепа не менее 75% по режиму: нагрев со средней скоростью 70-80° С/ч до температуры 490-510° С, повторный нагрев со средней скоростью 3-4° С/ч до промежуточной температуры 540-560° С и окончательный нагрев со средней скоростью 50-55° С/ч до температуры отжига 700-720° С, при которой рулоны выдерживают в течение 12-18 ч, формируется однородная микроструктура феррита с баллом зерна 6-7 и минимальным выделением структурно-свободного цементита. За первые две стадии нагрева вначале со скоростью 70-80° С/ч до 490-510° С и затем со скоростью 3-4° С/ч до 540-560° обеспечивается возврат стали, ее микрострутура подготавливается к рекристаллизации, рулон равномерно прогревается по всему сечению. Поэтому при заключительной стадии нагрева со средней скоростью 50-55° С/ч до 700-720° С и выдержке в течение 12-18 ч достигается полная и равномерная рекристаллизация деформированного металла, зерна микроструктуры приобретают оладьевидную форму. Частицы A1N и мелкодисперсные неметаллические включения оказывают ингибирующее действие на рекристаллизацию зерен при отжиге. В текстуре стали после отжига преобладает кристаллографическая ориентировка (111), наиболее благоприятная для холодной штамповки. Замедленное охлаждение со скоростью 19-21° С/ч от температуры отжига до температуры не выше 690° С стабилизирует микроструктуру стали предложенного состава, предотвращает последующее старение холоднокатаных листов и деградацию их механических свойств. Экспериментально установлено, что при суммарном относительном обжатии в процессе холодной прокатки менее 75% не достигается необходимая степень измельчения неметаллических включений стали, что ухудшает качество готовых листов. Нагрев на первой стадии со скоростью менее 70° С/ч до температуры ниже 490° С нецелесообразен, т.к. не улучшает качества листовой стали, а лишь удлиняет процесс отжига. Увеличение скорости нагрева более 80° С и температуры выше 510° С увеличивает неравномерность теплового поля рулона, ведет к возрастанию весовой нагрузки на внешние витки и их деформирование, что ухудшает качество готовой продукции. Повторный нагрев со скоростью менее 3° С/ч до температуры ниже 540° С удлиняет процесс отжига и ухудшает равномерность прогрева рулона при его нагреве до температуры отжига. Увеличение скорости нагрева более 4° С и температуры выше 560° С нарушает равномерность кристаллизации отдельных витков рулона и качество листовой стали. Снижение скорости нагрева на третьей стадии менее 50° С/ч неоправданно удлиняет цикл отжига. Увеличение этой скорости более 55° С/ч способствует формированию неравномерной микроструктуры и свойств по длине полосы. Снижение температуры отжига ниже 700° С, как и сокращение времени выдержки при этой температуре менее 12 ч не обеспечивают получение максимально допустимой штампуемости для стали данного состава. Увеличение температуры отжига выше 720° С и времени выдержки более 18 ч неоправданно удлиняют отжиг и провоцируют сваривание витков рулонов. Замедленное охлаждения со скоростью ниже 19° С/ч не повышает качества холоднокатаной стали, а лишь удлиняет процесс. Увеличение скорости охлаждения сверх 21° С/ч, как и повышение температуры его окончания выше 690° С, способствуют формированию неравномерной микроструктуры и свойств по длине холоднокатаных полос, что недопустимо. Углерод в стали является основным упрочняющим элементом. При содержании углерода менее 0,025% прочностные свойства листовой стали ниже допустимого уровня. Увеличение концентрации углерода сверх 0,050% снижает штампуемость листовой стали, что недопустимо. Кремний раскисляет и упрочняет сталь. Снижение содержания кремния менее 0,003% увеличивает окисленность стали, ухудшаются ее механические свойства. Увеличение содержания этого элемента более 0,010% приводит к потере пластичности, увеличению количества неметаллических включений. Марганец оказывает упрочняющее, раскисляющее и десульфурирующее действие. При содержании марганца менее 0,12% прочностные свойства ниже допустимого уровня, а увеличение его содержания более 0,19% ухудшает пластичность, коэффициент пластической анизотропии и штампуемость стали. Алюминий введен для модифицирования стали и связывания азота в нитриды. Нитриды алюминия упрочняют холоднокатаную сталь и способствуют получению в структуре оладьевидных зерен феррита и благоприятной для вытяжных операций кристаллографической ориентировки. При снижении содержания алюминия менее 0,02% сталь становится склонной к деградации механических свойств (старению). Увеличение содержания алюминия более 0,05% способствует графитизации стали, ухудшению ее механических свойств ниже допустимого уровня. Азот в качестве примесного элемента упрочняет сталь, но если его количество превышает 0,011%, сталь становится склонной к деформационному старению, ухудшаются вытяжные свойства и качество холоднокатаных листов. Примеры реализации способа В кислородном конвертере емкостью 350 тонн выплавляют малоуглеродистую сталь следующего состава, мас.%:
Выплавленную сталь разливают на машине непрерывного литья заготовок в слябы сечением 250× 1280 мм массой 28 т. Разливку ведут со скоростью 0,5 м/мин при температуре разливаемого металла 1535° С. Отлитые слябы после охлаждения загружают в газовую печь с шагающими балками, нагревают до температуры аустенитизации 1200° С. Слябы последовательно выдают на печной рольганг непрерывного широкополосного стана 2000 и обжимают в раскат сечением 40х1300 мм. Затем раскат задают в непрерывную 7-клетевую группу и прокатывают до конечной толщины 3,2 мм. Температуру полос на выходе из последней клети чистовой группы стана поддерживают равной 860° С. Горячекатаные полосы на отводящем рольганге охлаждают водой до температуры 630° С и сматывают в рулоны. Охлажденные рулоны подвергают сернокислотному травлению в непрерывном травильном агрегате. Затем травленые полосы в рулонах прокатывают на 5-клетевом стане кварто бесконечной холодной прокатки с толщины 3,2 мм до толщины 0,7 мм с суммарным относительным обжатием , равным Холоднокатаные полосы в рулонах загружают в колпаковую газовую одностопную печь с водородной защитной атмосферой и нагревают на первой стадии со средней скоростью V1=75° С/ч до температуры T1=500° C. При достижении этой температуры рулоны повторно нагревают со средней скоростью V2=3,5° С/ч до промежуточной температуры Т2=550° С. Окончательный нагрев рулонов ведут со средней скоростью V3=53° С/ч до температуры отжига То=710° С. При температуре отжига То=710° С рулоны выдерживают в течение времени =15 ч. По истечении указанного времени выдержки подачу газа снижают и производят замедленное охлаждение рулонов со скоростью Vохл=20° С/ч до температуры Тохл=680° С. После этого рулоны охлаждают с помощью охладительного колпака до температуры распаковки 80° С. Отожженные полосы дрессируют на одноклетевом стане кварто. Дрессировку ведут с обжатием 1,0%. После этого производят испытания механических свойств холоднокатаной листовой стали и оценку состояния качества поверхности.
Из табл.1-3 следует, что в случае реализации предложенного способа (варианты №2-4) достигается улучшение качественных характеристик и увеличение выхода листовой стали высшей категории качества. При запредельных значениях заявленных параметров (варианты 1 и 5) и использовании способа-прототипа (вариант 6) качественные характеристики и выход листовой стали высшей категории качества снижаются. Технико-экономические преимущества предложенного способа состоят в том, что при его реализации достигается одновременное формирование микроструктуры, обеспечивающей высокую штампуемость холоднокатаных листов, и минимизация отрицательного влияния неметаллических включений в стали. В качестве базового объекта при определении технико-экономических преимуществ предложенного способа принят способ-прототип. Использование предложенного способа обеспечит повышение рентабельности производства листовой стали с высокими вытяжными свойствами для холодной штамповки на 10-15%.
Источники информации 1. Заявка 59-13030 (Япония), МПК С 21 D 9/48, С 21 D 8/04, 1984 г. 2. Патент США №4368084, МПК C 21 D 8/06, 1983 г. 3. С.С.Гусева и др. Непрерывная термическая обработка автолистовой стали. М., Металлургия, 1979 г., с.9-25 – прототип.
Формула изобретения
1. Способ производства холоднокатаной листовой стали для глубокой вытяжки, включающий горячую прокатку непрерывно-литых слябов из малоуглеродистой стали, травление, многопроходную холодную прокатку, рекристаллизационный отжиг рулонов в колпаковой печи с нагревом за несколько стадий, выдержкой, охлаждением и дрессировку, отличающийся тем, что многопроходную холодную прокатку ведут с суммарным относительным обжатием не менее 75%, а рекристаллизационный отжиг осуществляют по режиму: нагрев со средней скоростью 70-80°С/ч до температуры 490-510°С, повторный нагрев со средней скоростью 3-4°С/ч до промежуточной температуры 540-560°С и окончательный нагрев со средней скоростью 50-55°С/ч до температуры отжига 700-720°С, при которой рулоны выдерживают в течение 12-18 ч. 2. Способ по п.1, отличающийся тем, что по окончании выдержки при температуре отжига рулоны охлаждают со скоростью 19-21°С/ч до температуры не выше 690°С. 3. Способ по любому из пп.1 и 2, отличающийся тем, что непрерывно-литые слябы из малоуглеродистой стали имеют следующий химический состав, мас.%: Углерод 0,025-0,050 Кремний 0,003-0,01 Марганец 0,12-0,19 Алюминий 0,02-0,05 Азот Не более 0,011 Железо и примеси Остальное
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||