Патент на изобретение №2255834

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2255834 (13) C1
(51) МПК 7
B22D11/22, B22D2/00, G01J5/60
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.01.2011 – действует

(21), (22) Заявка: 2004115020/02, 17.05.2004

(24) Дата начала отсчета срока действия патента:

17.05.2004

(45) Опубликовано: 10.07.2005

(56) Список документов, цитированных в отчете о
поиске:
АНИКИН А. и др., “Оптический измеритель скорости слитка машины непрерывного литья заготовок”, “Современные Технологии Автоматизации”, №4, 2001, с. 22-27. RU 2083961 C1, 10.07.1997. SU 1041205 A, 15.09.1983. RU 2031756 C1, 27.03.1995. JP 58035055 A, 01.03.1983.

Адрес для переписки:

162600, Вологодская обл., г. Череповец, ул. Мира, 30, ОАО “Северсталь”, Начальнику управления качества А.М. Ламухину

(72) Автор(ы):

Зиборов А.В. (RU),
Ламухин А.М. (RU),
Кузьминов А.Л. (RU),
Туманов Д.В. (RU)

(73) Патентообладатель(и):

Открытое акционерное общество “Северсталь” (ОАО “Северсталь”) (RU)

(54) СПОСОБ ОПТИЧЕСКОГО КОНТРОЛЯ ПАРАМЕТРОВ НЕПРЕРЫВНОЙ РАЗЛИВКИ СТАЛИ И ОПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ

(57) Реферат:

Изобретение относится к оптическим методам контроля технологических параметров установки непрерывной разливки стали (УНРС). Технический результат – увеличение функциональных возможностей способа контроля параметров непрерывной разливки стали за счет обеспечения измерения температурного поля боковой поверхности непрерывнолитой заготовки (НЗ) и величины выпучивания (НЗ) под действием ферростатического давления. Способ контроля технологических параметров (УНРС) включает непрерывную покадровую регистрацию излучения участка поверхности (НЗ), преобразование сигналов в цифровую форму, сравнение нескольких последовательных кадров, расчет мгновенного перемещения поля излучения поверхности заготовки, определение текущей длины заготовки путем суммирования мгновенных перемещений в требуемом временном интервале. Оптический измеритель устанавливают в районе секций вторичного охлаждения УНРС и ориентируют на широкую грань заготовки, регистрируют изображение поверхности в трех диапазонах длин волн: 1-2, 2-3, 3-4 и по известной зависимости Вина-Планка получают поле температур поверхности (НЗ). Рассчитывают мгновенное перемещение температурного поля литой заготовки в двух направлениях: по краю и по центру заготовки, определяют величину выпучивания заготовки по определенной зависимости. Оптический измеритель содержит корпус и последовательно расположенные в нем объектив, координатно-чувствительный фотоприемник, блок аналого-цифровой обработки, блок управления и отдельно расположенный компьютер, предназначенный для архивации и визуализации данных. За объективом установлена призма, за которой расположены три координатно-чувствительных фотоприемника, чувствительных к разным интервалам длин волн. Выход каждого фотоприемника соединен с входом блока аналого-цифровой обработки. Выход блока аналого-цифровой обработки соединен с входом блока управления, соединенного с компьютером. 2 н.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к оптическим методам контроля технологических параметров непрерывной разливки стали и может использоваться для контроля температуры нагретого тела, его геометрических характеристик и скорости передвижения.

Известен способ и устройство [Дж.Б.Лин “Исследование непрерывной разливки стали”, перевод, М. “Металлургия”, 1982 г., с.88-89] определения скорости передвижения непрерывнолитой заготовки по угловой скорости вращения измерительного ролика, катящегося по поверхности заготовки. Его недостатком является погрешность измерения, связанная с температурным расширением ролика и частичным скольжением ролика по поверхности. Также недостатком является отсутствие возможности измерения температуры непрерывнолитой заготовки и ее геометрических характеристик.

Также известен способ [Заявка RU 2083961, G 01 J 5/60 от 10.07.97] измерения температуры и коэффициента излучения поверхности при температурах выше 900К. Сущность способа заключается в регистрации излучения поверхности посредством многоволнового пирометра, обработки сигналов в цифровую форму, расчет с помощью закона Вина-Планка температуры при предположении, что речь идет об идеальном черном теле, расчет коэффициента излучения и расчет истинной температуры нагретой поверхности. Ограничением указанного способа является отсутствие определения скорости перемещения нагретой поверхности в режиме непрерывной разливки стали.

Наиболее близким по технической сущности и достигаемому техническому результату является способ оптического измерения скорости непрерывнолитой заготовки и устройство для его осуществления [Журнал “Современные технологии автоматизации” №4-2001 г., стр.22-27], включающий установку оптического измерителя в районе машины газовой резки, ориентацию измерителя на узкую грань заготовки, непрерывную покадровую регистрацию излучения участка поверхности непрерывнолитой заготовки, преобразование сигналов в цифровую форму, сравнение нескольких последовательных кадров, расчет мгновенного перемещения поля излучения поверхности заготовки, определение текущей длины заготовки путем суммирования мгновенных перемещений в требуемом временном интервале.

Устройство оптического измерителя содержит корпус и последовательно расположенные в нем объектив, координатно-чувствительный фотоприемник, блок аналого-цифровой обработки, вход которого связан с выходом координатно-чувствительного фотоприемника, блок управления, а также отдельно расположенный компьютер, предназначенный для архивации и визуализации данных.

Недостатками известного способа и устройства является отсутствие возможности измерения температуры боковой поверхности непрерывнолитой заготовки и величины выпучивания непрерывнолитой заготовки как величины, характеризующей текущее фазовое состояние непрерывнолитой заготовки и работу системы вторичного охлаждения.

Технический эффект при использовании изобретения заключается в увеличении функциональных возможностей способа контроля параметров непрерывной разливки стали, а именно: измерение температурного поля боковой поверхности непрерывнолитой заготовки и величины выпучивания непрерывнолитой заготовки под действием ферростатического давления.

Указанный технический эффект достигается тем, что в предлагаемом способе контроля параметров непрерывной разливки стали устанавливают оптический измеритель в районе секций вторичного охлаждения УНРС и ориентируют на широкую грань заготовки. Регистрируют излучения поверхности заготовки в трех диапазонах длин волн: 1- 2, 2- 3, 3- 4, преобразуют сигналы в цифровую форму, получают по известной зависимости Вина-Планка поле температур поверхности непрерывнолитой заготовки, рассчитывают мгновенное перемещение температурного поля литой заготовки в двух направлениях: по краю и по центру заготовки, определяют величину выпучивания заготовки из отношения:

где Н – межосевое расстояние между роликами секции вторичного охлаждения;

h – величина ферростатического выпучивания;

Нn – мгновенное перемещение поля температур по краю заготовки;

n – проекция на вертикальную ось мгновенного перемещения поля температур по центру заготовки в n измерении;

n+1 – проекция на вертикальную ось мгновенного перемещения поля температур по центру заготовки в n+1 измерении;

n – порядковый номер измерения

m – количество измерений оптического измерителя, при которых Н – const.

Оптический измеритель содержит корпус и последовательно расположенные в нем объектив, координатно-чувствительный фотоприемник, блок аналого-цифровой обработки, блок управления, а также отдельно расположенный компьютер, предназначенный для архивации и визуализации данных. В отличие от прототипа оптический измеритель дополнительно содержит призму, установленную за объективом, и три координатно-чувствительных фотоприемника, чувствительных к разным интервалам длин волн, расположенных за призмой, при этом выход каждого фотоприемника соединен с входом блока аналого-цифровой обработки, а выход блока аналого-цифровой обработки соединен с входом блока управления, который в свою очередь соединен с компьютером.

Сущность предлагаемого способа контроля параметров непрерывной разливки стали и устройство для его осуществления поясняется с помощью фиг.1, на которой изображается схема оптического измерителя, на фиг.2а, б, в, г – основные геометрические характеристики непрерывнолитой заготовки в районе секции вторичного охлаждения, на фиг.3 – прогиб боковой поверхности заготовки от действия ферростатического давления.

Устройство на фиг.1 содержит корпус 1 и установленные в нем объектив 2, призму 3, три координатно-чувствительный фотоприемника 4, блок аналого-цифровой обработки 5, блок управления 6, а также отдельно расположенный компьютер 7.

Предложенный способ реализуется с помощью оптического измерителя, который работает следующим образом.

Оптический измеритель устанавливают в районе секций вторичного охлаждения УНРС и ориентируют на широкую грань заготовки. Поток излучения от нагретого тела через объектив попадает на призму, где делится на три потока, которые фиксируются соответствующими фотоприемниками, чувствительными к разным интервалам длин волн. Каждая ячейка координатно-чувствительного фотоприемника формирует пропорциональный излучению электрический сигнал, который затем оцифровывается и записывается в один из трех массивов. В таком массиве строки эквивалентны размеру окна наблюдения (межроликовому пространству), а столбцы – ширине сляба. Блок управления сравнивает соответствующие значения массивов и по зависимости Вина-Планка определяет поле температур поверхности непрерывнолитой заготовки в предположении, что поверхность является идеальным черным телом, по формуле:

где L – энергетическая яркость при длине волны ,

С1 и С2 – постоянные для конкретной марки стали,

Т – температура черного тела.

Блок управления рассчитывает по формуле аппроксимации коэффициент излучения, зависящий от температуры и длины волны, и определяет истинную температуру для каждой точки поверхности непрерывнолитой заготовки. Также блок управления определяет вертикальное смешение температурного поля в двух направлениях – по центру и по краю слитка в течение нескольких измерений. В описании под точкой подразумевается единица боковой поверхности заготовки, обладающая фиксированной температурой, а под температурным полем – совокупность точек на поверхности слитка. Вертикальное смещение поля температур между двумя соседними измерениями – мгновенное перемещение.

В случае наличия явления выпучивания непрерывнолитой заготовки профили его продольных сечений будут иметь характерные отличия, как это показано на фиг.2а, б, в, причем скорость точки А больше скорости точки В, так как в сечении А-А будет наблюдаться максимальный прогиб боковой стенки непрерывнолитой заготовки и любая точка на поверхности непрерывнолитой заготовки в данном сечении вынуждена двигаться по дуге. Время, за которое т.А перейдет в т.А’, равно времени, за которое т.В перейдет в т.В’. В противном случае наблюдалась бы пластическая деформация боковой поверхности непрерывнолитой заготовки

где t – время между двумя соседними измерениями, t – const;

l – длина дуговой траектории движения т.А.;

Н – межосевое расстояние между роликами тянущей секции вторичного охлаждения;

Согласно фиг.2.г:

R2=(H/2)2+(R-H)2

Оптический измеритель, наблюдающий за непрерывнолитой заготовкой в сечении А-А, фиксирует вертикальные проекции перемещения точки на поверхности непрерывнолитой заготовки. Следует заметить, что время между двумя соседними измерениями – величина постоянная, т.е. в случае постоянной скорости разливки за период между соседними измерениями любая точка на поверхности непрерывнолитой заготовки проходит равные абсолютные расстояния. Т.А проходит мгновенное перемещение ( ln), т.В проходит мгновенное перемещение ( Нn). Вертикальные проекции траектории мгновенных перемещений т.А, двигающейся по дуге (n), сначала, до перехода т.А линии максимума выпуклости, при каждом последующем измерении начнут увеличиваться, а затем уменьшаться. Это наглядно видно из фиг.3.

Величины текущих мгновенных перемещений т.А ( ln):

где k – коэффициент отношения величины мгновенных перемещений т.А к величине мгновенных перемещений т.В при величине времени между двумя соседними измерениями, стремящейся к нулю, коэффициент k 1;

Согласно фиг.3 из треугольников ОАС, CAB, СДЕ следует, что мгновенное угловое перемещение ( n):

n=| n n+1|

n=((arcsin( lxn ln)-arcsin( lxn+1/ ln))

где n, n+1 – углы перемещения т.А за время двух последовательных измерений.

Текущий мгновенный радиус окружности траектории движения т.А (Rn):

Rn= ln/ n

Радиус окружности траектории движения т.А (R) при постоянной скорости движения непрерывнолитой заготовки:

где m – количество последовательных сигналов с оптического измерителя, при которых Н – const;

Величину выпучивания непрерывнолитой заготовки (h) найдем из отношения:

где Н – межосевое расстояние между роликами секции вторичного охлаждения;

h – величина ферростатического выпучивания;

Нn – мгновенное перемещение поля температур по краю заготовки;

n – проекция на вертикальную ось мгновенного перемещения поля температур по центру заготовки в n измерении;

n+1 – проекция на вертикальную ось мгновенного перемещения поля температур по центру заготовки в n+1 измерении;

n – порядковый номер измерения;

m – количество измерений оптического измерителя, при которых Н – const.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков предложенных способа и устройства с признаками известных технических решений. На основании этого делается вывод о соответствии предложенного технического решения критерию “изобретательский уровень”.

Пример. Устанавливают оптический измеритель между третьим и четвертым роликами нулевой секции вторичного охлаждения УНРС (расстояние между роликами Н=170 мм) на расстоянии 1,5-2 метра от непрерывнолитой заготовки. Регистрируют излучения поверхности заготовки в трех диапазонах длин волн: 0,3-0,44 мкм, 0,44-0,58 мкм, 0,58-0,72 мкм, преобразуют сигналы в цифровую форму. Сравнивают соответствующие значения массивов и по зависимости Вина-Планка, определяют поле температур поверхности непрерывнолитой заготовки в предположении, что поверхность является идеальным черным телом, рассчитывают по формуле аппроксимации коэффициент излучения, зависящий от температуры и длины волны, и определяют истинную температуру для каждой точки поверхности непрерывнолитой заготовки. Температура боковой поверхности слитка находится в диапазоне температур 900-1150° С. Определяют проекцию мгновенного перемещения температурного поля заготовки, движущегося, например, со стационарной скоростью 0,72 м/мин в двух направлениях – по центру и по краю слитка в течение четырех измерений с периодичностью 1 с. Полученные величины проекций мгновенных перемещений точек за интервал работы 4 с оптического измерителя приведены в таблице 1.

Результаты измерений мгновенных перемещений температурного поля используют для нахождения величины выпучивания непрерывнолитой заготовки:

Формула изобретения

1. Способ контроля технологических параметров разливки установки непрерывной разливки стали (УНРС), включающий непрерывную покадровую регистрацию излучения участка поверхности непрерывнолитой заготовки, преобразование сигналов в цифровую форму, сравнение нескольких последовательных кадров, расчет мгновенного перемещения поля излучения поверхности заготовки, определение текущей длины заготовки путем суммирования мгновенных перемещений в требуемом временном интервале, отличающийся тем, что оптический измеритель устанавливают в районе секций вторичного охлаждения УНРС и ориентируют на широкую грань заготовки, регистрируют изображение поверхности в трех диапазонах длин волн 1-2, 2-3, 3-4, преобразуют сигналы в цифровую форму и по известной зависимости Вина-Планка получают поле температур поверхности непрерывнолитой заготовки, рассчитывают мгновенное перемещение температурного поля литой заготовки в двух направлениях: по краю и по центру заготовки, определяют величину выпучивания заготовки из отношения

где Н – межосевое расстояние между роликами секции вторичного охлаждения, мм;

h – величина ферростатического выпучивания, мм;

Нn – мгновенное перемещение поля температур по краю заготовки, мм;

n – проекция на вертикальную ось мгновенного перемещения поля температур по центру заготовки в n-м измерении, мм;

n+1 – проекция на вертикальную ось мгновенного перемещения поля температур по центру заготовки в (n+1)-м измерении, мм;

n – порядковый номер измерения;

m – количество измерений оптического измерителя, при которых Н – const.

2. Оптический измеритель, содержащий корпус и последовательно расположенные в нем объектив, координатно-чувствительный фотоприемник, блок аналого-цифровой обработки, блок управления, а также отдельно расположенный компьютер, предназначенный для архивации и визуализации данных, отличающийся тем, что оптический измеритель дополнительно снабжен призмой, установленной за объективом, и тремя координатно-чувствительными фотоприемниками, чувствительными к разным интервалам длин волн, расположенными за призмой, при этом выход каждого фотоприемника соединен с входом блока аналого-цифровой обработки, а выход блока аналого-цифровой обработки соединен с входом блока управления, который, в свою очередь, соединен с компьютером.

РИСУНКИ

Categories: BD_2255000-2255999