Патент на изобретение №2255358

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2255358 (13) C1
(51) МПК 7
G01V11/00
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.01.2011 – прекратил действие

(21), (22) Заявка: 2004121613/28, 15.07.2004

(24) Дата начала отсчета срока действия патента:

15.07.2004

(45) Опубликовано: 27.06.2005

(56) Список документов, цитированных в отчете о
поиске:
RU 2183335 C1, 10.06.2002. RU 2201606 C1, 27.03.2003. RU 2210094 C1, 10.08.2003. GB 1405299 A, 10.09.1975.

Адрес для переписки:

105215, Москва, Сиреневый б-р, 37/40, кв.31, Е.А. Копилевичу

(72) Автор(ы):

Нестеров В.Н. (RU),
Копилевич Е.А. (RU),
Мушин И.А. (RU),
Соколов Е.П. (RU),
Давыдова Е.А. (RU)

(73) Патентообладатель(и):

Общество с ограниченной ответственностью “Инжиниринговый центр” (RU)

(54) СПОСОБ ГЕОФИЗИЧЕСКОЙ РАЗВЕДКИ ДЛЯ ВЫЯВЛЕНИЯ НЕФТЕГАЗОПРОДУКТИВНЫХ ТИПОВ ГЕОЛОГИЧЕСКОГО РАЗРЕЗА В ТРЕХМЕРНОМ МЕЖСКВАЖИННОМ ПРОСТРАНСТВЕ

(57) Реферат:

Изобретение может быть использовано в нефтегазовой геологии для оптимизации размещения разведочных и эксплуатационных скважин на исследуемых нефтегазоперспективных объектах. Способ включает проведение трехмерных сейсморазведочных работ 3D, бурение скважин с отбором керна, электрический, радиоактивный, акустический и сейсмический каротаж, испытание скважин. По данным бурения и геофизических исследований скважин выполняется типизация геологического разреза целевых нефтегазопродуктивных отложений. По данным акустического, сейсмического и радиоактивного каротажа, лабораторных исследований керна устанавливаются жесткостные модели целевых отложений, рассчитываются синтетические сейсмические трассы, по которым проводят спектрально-временной анализ (СВАН) и определяют эталонные модельные сейсмические спектрально-временные образы (СВО) нефтегазопродуктивных отложений. По данным геофизических исследований скважин (ГИС) – акустического, электрического, радиоактивного каротажа – определяют скважинные (вертикальные) эталонные СВО целевого интервала разреза путем СВАН кривых ГИС. По данным сейсморазведки 3D в районе скважин определяют эталонные экспериментальные спектрально-временные образы (СВО) нефтегазопродуктивных и других типов геологического разреза на основе применения СВАН данных сейсморазведки 3D в целевом интервале записи. Производят количественную оценку модельных, скважинных и экспериментальных СВО. Модельные, скважинные спектрально-временные атрибуты (СВА) и экспериментальные объемные спектральные сейсмические атрибуты (ОССА) должны взаимно коррелироваться с коэффициентом взаимной корреляции (КВК) более 0,75. По наибольшим КВК выбирают оптимальные ОССА. По всем трассам сейсмического временного куба в целевом интервале записи проводят СВАН и его количественную спектрально-энергетическую параметризацию по частоте и времени с построением кубов оптимальных ОССА либо комплексного ОССА. Сопоставляют результаты с эталонными оптимальными ОССА и проводят количественное определение различных типов геологического разреза в любой точке трехмерного межскважинного пространства с выявлением местоположения нефтегазопродуктивных типов геологического разреза. Технический результат: повышение надежности и точности обоснования геологических условий размещения разведочных и эксплуатационных скважин.

Изобретение относится к нефтегазовой геологии и может быть использовано для оптимизации заложения разведочных и эксплуатационных скважин на исследуемых объектах по комплексу данных наземной трехмерной сейсмической разведки 3D, бурения и испытания скважин, ГИС, изучения керна.

Известен способ геофизической разведки для определения нефтепродуктивных типов геологического разреза, включающий бурение скважин, электрический, радиоактивный и акустический каротаж, испытание скважин и исследование керна, сейсморазведочные работы 2D, а также последующую обработку полученной информации для геологической типизации целевого интервала разреза, включающего нефтепродуктивные отложения, получения эталонных модельных и экспериментальных спектрально-временных образов (СВО) с помощью спектрально-временного анализа (СВАН) временных сейсмических разрезов в районе скважин; спектрально-энергетической параметризации энергетических спектров СВАН-колонок по частоте и времени с определением шести спектрально-временных параметров (СВП), представляющих собой произведение удельной спектральной плотности энергетических спектров на их максимальные или средневзвешенные частоту и время, а также отношение энергии высоких частот и больших времен к энергии низких частот и малых времен, количественной характеристики СВО различных типов геологического разреза по значениям СВП, определения СВП по сейсмическим профилям с построением карты типов геологического разреза в изолиниях оптимальных СВП для конкретных сейсмогеологических условий, выбранный в качестве ближайшего аналога (Патент на изобретение №2183335).

Недостатком известного способа является проведение наземной сейсмической разведки по профилям, т.е. двумерной сейсморазведки 2D, данные которой не учитывают возможный пространственный сейсмический снос и характеризуются недостаточной детальностью, особенно в сложных сейсмогеологических условиях и на эксплуатационном этапе разбуривания нефтегазоперспективных объектов.

Соответственно и СВАН проводится по временным сейсмическим разрезам с получением СВАН-колонок, энергетических спектров и СВП по профилям с последующим построением карты типов геологического разреза в изолиниях СВП, то есть двумерного изображения местоположения различных типов геологического разреза на горизонтальной плоскости. При этом потеря точности работ происходит и на конечном этапе, при проведении изолиний СВП и применении интерполяции значений СВП между профилями в связи с недостаточной детальностью полевых сейсморазведочных работ 2D.

В силу указанных недостатков могут быть допущены ошибки в определении местоположения нефтегазопродуктивных типов геологического разреза и, как следствие, неоптимальное размещение скважин и увеличение затрат на освоение объекта.

Технической задачей, на решение которой направлено данное изобретение, является повышение надежности и точности обоснования геологических условий заложения новых разведочных и эксплуатационных скважин путем выявления нефтегазопродуктивных типов геологического разреза в трехмерном межскважинном пространстве.

Способ геофизической разведки для выявления нефтегазопродуктивных типов геологического разреза в трехмерном межскважинном пространстве включает проведение трехмерных сейсморазведочных работ 3D продольными волнами по методу общей глубинной точки (МОГТ), бурение скважин, электрический, радиоактивный, акустический и сейсмический каротаж, испытание скважин и исследование керна.

По данным бурения проводят типизацию геологического разреза с использованием совокупности признаков – литофациальной и гранулометрической характеристик; особенностей развития литогенеза, толщины целевого интервала, эффективной толщины коллекторов, их пористости, емкости, проницаемости, гидропроводности, продуктивности скважин, а также спектрально-временных атрибутов (СВА) данных геофизических исследований скважин – кривых ГИС (Патент на изобретение №2201606).

При этом основные отличительные особенности этой типизации заключаются в том, что выделенные типы геологического разреза, с одной стороны, существенно различаются по фильтрационно-емкостным свойствам коллекторов (проницаемость, гидропроводность, емкость) и нефтегазовой продуктивности (дебит, коэффициент продуктивности), а, с другой стороны, количество типов разреза соответствует разрешающей способности среднечастотной сейсморазведки, т.е. количеству уверенно различающихся по СВА-ГИС и объемным спектральным сейсмическим атрибутам (ОССА) эталонных СВО.

Разница между типами геологического разреза должна отображаться в разнице СВА-ГИС и ОССА-сейсморазведка () где – среднеквадратическая оценка изменения СВА-ГИС и ОССА-сейсморазведка для каждого из выделенных типов геологического разреза, в том числе и дизъюнктивных, характеризующихся малоамплитудными или безамплитудными тектоническими нарушениями, имеющими большое значение при формировании природных нефтегазовых резервуаров.

По данным акустического, сейсмического, радиоактивного каротажа, лабораторных исследований керна устанавливаются жесткостные модели в скважинах для каждого типа геологического разреза, рассчитываются синтетические сейсмические трассы, по которым проводят СВАН и определяют эталонные модельные СВО и их спектрально-временные атрибуты (СВА) для различных типов геологического разреза.

По данным ГИС определяют скважинные СВА целевого интервала разреза.

По данным сейсморазведки 3D на основе СВАН определяют эталонные экспериментальные СВО и их ОССА в районе эталонных скважин, соответствующие нафтегазопродуктивным и другим типам геологического разреза в целевом временном интервале.

Модельные, скважинные СВА и экспериментальные ОССА должны быть одинаковыми, с коэффициентом взаимной корреляции КВК0,75, что свидетельствует об обоснованном определении СВО и ОССА по данным сейсморазведки 3D.

СВО данных сейсморазведки 3D – временного куба, т.е. зависимости сейсмических амплитуд (A) от трех координат – x, y, t – A=f(x, y, t) – представляет собой четырехмерную зависимость сейсмических амплитуд от координат x, y, f, t или два куба зависимостей

A=f(x, f, t) и A=f(y, f, t), где

f – переменная центральная частота спектров сейсмической записи,

t – ось времен (глубин),

x, y – пространственные координаты.

СВО характеризуется количественно с использованием ОССА по каждому из двух кубов и получением шести кубов ОССА, т.е. трехмерной зависимости ОССА от трех координат OCCA=f(x, y, t).

ОССА в количестве шести атрибутов определяются по энергетическим частотному (по оси частот – f) и временному (по оси времен – t) спектрам трехмерных результатов СВАН – кубам СВО.

ОССА по оси частот:

где S(А2)(t) – спектральная плотность частотного энергетического спектра, пропорциональная квадрату амплитуды сейсмической записи в целевом временном интервале t,

fн – начальная (низкая) частота спектра на уровне 10% от его максимума,

fк – конечная (высокая) частота спектра на уровне 10% от его максимума,

Таким образом, ОССА1 – это отношение энергии высоких частот к энергии низких частот энергетического частотного спектра.

где f=fк-fн; – средневзвешенная частота.

Таким образом, ОССА2 это произведение удельной спектральной плотности энергетического частотного спектра на средневзвешенную частоту.

где fmax – максимальная частота энергетического частотного спектра на уровне 30-70% от его максимума.

Таким образом, ОССА3 – это произведение удельной спектральной плотности энергетического частотного спектра на максимальную частоту с выбором уровня (30-70%) ее определения.

ОССА по оси времен:

где S(A2)(f), tн, tк, t, tср, – те же параметры энергетического спектра, только по оси времен (t).

Значения ОССА по оси t определяются сдвигом целевого интервала (t) на постоянную избранную величину.

Таким образом, из двух кубов СВО получается шесть кубов OCCA1-6 в координатах x, y, t.

Совокупность ОССА в районе скважин количественно определяют эталонные СВО нефтегазопродуктивных, дизъюнктивных с малоамплитудными (безамплитудными) тектоническими нарушениями и других типов геологического разреза.

Из шести ОССА выбирают оптимальные для конкретных сейсмогеологических условий по принципу достижения максимальных значений разницы ОССА для различных типов геологического разреза и коэффициентов взаимной корреляции с модельными сейсмическими СВА и СВА-ГИС.

Выявление нефтегазопродуктивных типов геологического разреза производится путем сопоставления значений оптимальных ОССА с эталонными по соответствующим кубам ОССА, либо по комплексному ОССА, представляющему собой свертку оптимальных ОССА по известным современным алгоритмам кокрайкинга или искусственных нейронных сетей.

Таким образом, данное предложение с высокой точностью позволяет определить интегральную геологическую характеристику (тип разреза) в любой точке трехмерного межскважинного пространства.

Это обеспечивает резкое снижение затрат на бурение последующих разведочных и эксплуатационных скважин.

Формула изобретения

Способ геофизической разведки для выявления нефтегазопродуктивных типов геологического разреза, включающий проведение наземных сейсморазведочных работ, бурение скважин с отбором керна, выполнение электрического, радиоактивного, акустического и сейсмического каротажей, испытание скважин, изучение керна и суждение по полученным данным о наличии нефтегазопродуктивных типов геологического разреза, отличающийся тем, что в межскважинном пространстве проводят трехмерные сейсморазведочные работы 3D, по совокупности данных бурения и спектрально-временного анализа данных геофизических исследований скважин проводят эталонную типизацию разреза и определение эталонных модельных сейсмических и скважинных спектрально-временных образов, а по полученным данным проведенной наземной трехмерной сейсморазведки 3D в районе скважин определяют эталонные экспериментальные спектрально-временные образы нефтегазопродуктивных и других типов геологического разреза на основе применения спектрально-временного анализа данных сейсморазведки в целевом интервале записи, производят количественную оценку модельных сейсмических, скважинных и экспериментальных сейсмических спектрально-временных образов, представляющую собой произведение удельных по частоте спектральных плотностей энергетического частотного спектра на средневзвешенную и максимальную частоту, и произведение удельных по времени спектральных плотностей энергетического временного спектра на средневзвешенное и максимальное время, а также отношение энергии высоких частот и больших времен к энергии низких частот и меньших времен, с последующей взаимной корреляцией полученных количественных атрибутов и выбором оптимальных атрибутов с наибольшими коэффициентами взаимной корреляции, затем по всем трассам сейсмического временного куба проводят спектрально-временной анализ и его количественную параметризацию по частоте и времени, а результаты в виде кубов оптимальных объемных спектральных сейсмических атрибутов, либо комплексного атрибута, сопоставляют с эталонными и количественно выявляют нефтегазопродуктивные типы геологического разреза в любой точке трехмерного межскважинного пространства.


PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение

(73) Патентообладатель(и):

Общество с ограниченной ответственностью “Инжиниринговый центр”

(73) Патентообладатель:

Копилевич Ефим Абрамович

(73) Патентообладатель:

Мушин Иосиф Аронович

(73) Патентообладатель:

Соколов Евгений Петрович

(73) Патентообладатель:

Давыдова Елена Александровна

(73) Патентообладатель:

Нестеров Валерий Николаевич

Дата и номер государственной регистрации перехода исключительного права: 26.01.2007 № РД0017351

Извещение опубликовано: 20.03.2007 БИ: 08/2007


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 16.07.2007

Извещение опубликовано: 27.02.2009 БИ: 06/2009


Categories: BD_2255000-2255999