|
(21), (22) Заявка: 2004108571/28, 22.03.2004
(24) Дата начала отсчета срока действия патента:
22.03.2004
(45) Опубликовано: 27.05.2005
(56) Список документов, цитированных в отчете о поиске:
RU 2131601 C1, 10.06.1999. RU 2171468 C1, 10.08.1998. RU 2096776 C1, 20.11.1997. US 4476096 A, 09.10.1984.
Адрес для переписки:
241037, г.Брянск, пр-т Ст. Димитрова, 3, БГИТА
|
(72) Автор(ы):
Ковалевский В.В. (RU), Симохин С.П. (RU)
(73) Патентообладатель(и):
Брянская государственная инженерно-технологическая академия (RU)
|
(54) УСТРОЙСТВО ДЛЯ КОНТРОЛЯ КОНЦЕНТРАЦИЙ ОПАСНЫХ ГАЗОВ
(57) Реферат:
Изобретение относится к средствам контроля атмосферы и может быть использовано для мониторинга окружающей среды, в частности для непрерывного контроля уровня газовых примесей в атмосфере жилых, производственных и иных помещений. Сущность: устройство содержит три независимых датчика, реагирующих избирательно на конкретный газ: метан – СН4, угарный газ – СО, кислород – О2, микроЭВМ, часы и интерфейсное устройство с ПК. Снимаемая с датчиков информация преобразуется в цифровой код и передается на дисплей компьютера. В устройстве предусмотрен счет времени, сохранение информации в общей базе и сравнение с предельно допустимыми концентрациями этих веществ. Технический результат – расширение функциональных возможностей и повышение информативности. 1 ил.
Изобретение относится к средствам контроля атмосферы и предназначено для мониторинга окружающей среды, в частности для непрерывного контроля уровня газовых примесей (угарного газа – СО и метана – СH4) в атмосфере жилых, производственных и иных помещений.
Известен сигнализатор метана, содержащий мостовую измерительную схему, вход которой соединен с выходом стабилизатора напряжения, а выход мостовой измерительной схемы соединен с входом масштабирующего усилителя, выход масштабирующего усилителя соединен с первым входом компаратора превышения порогового уровня метана, выход компаратора порогового уровня метана соединен с первым входом индикатора порогового уровня, источник первого опорного напряжения, соединенный со вторым входом компаратора превышения порогового уровня, аналого-цифровой преобразователь (АЦП), соединенный с выходом масштабирующего усилителя и с входом цифрового индикатора, компаратор разряда аккумуляторной батареи, первый вход которого соединен с источником второго опорного напряжения, а выход соединен со вторым входом индикатора порогового уровня, аккумуляторную батарею, первый, второй и третий выходы которой соединены соответственно с входами преобразователя и стабилизатора напряжений и вторым входом компаратора разряда аккумуляторной батареи [1].
Недостатками указанного прибора являются:
– работа прибора только в режиме пороговой сигнализации и невозможность применения его для количественного измерения концентраций контролируемого параметра;
– невозможность протоколирования развития аварийной ситуации;
– контроль только одного параметра.
Наиболее близким по технической сущности к заявляемому устройству является сигнализатор метана, содержащий мостовую измерительную схему, усилитель постоянного тока, аналого-цифровой преобразователь, арифметико-логическое устройство, запоминающее устройство и аккумуляторную батарею. Выход цифроаналогового преобразователя соединен с выходом усилителя постоянного тока, выход которого соединен с входом мостовой измерительной схемы и первым входом аналогового коммутатора. Выход аналогового коммутатора соединен с входом аналого-цифрового преобразователя, выход которого соединен с первым входом арифметико-логического устройства, первый, второй, третий и четвертый выходы которого соединены соответственно с входом цифроаналогового преобразователя, входом индикатора порогового уровня, четвертым входом аналогового коммутатора и входом запоминающего устройства. Второй вход арифметико-логического устройства соединен с выходом запоминающего устройства [2].
Недостатками указанного прибора являются сложность его обслуживания вследствие наличия большого количества регулировочных элементов и низкая точность измерения.
Задача изобретения – обеспечивание возможности непрерывного контроля уровня и соотношения газовых примесей в широком диапазоне.
Технический результат – расширение функциональных возможностей устройства и повышение информативности.
Это достигается тем, что в сигнализаторе метана, содержащем измерительную схему, включающую датчик метана, схему обработки измерительной информации, включающую усилитель сигналов, аналоговый коммутатор, аналого-цифровой преобразователь, а также запоминающее устройство, информационное табло и блок питания, измерительная схема дополнительно содержит датчик угарного газа и датчик кислорода, а схема обработки измерительной информации – микроЭВМ, часы и интерфейсное устройство с ПК, при этом датчики измерительной части выполнены в виде полупроводниковых газовых сенсоров, выход аналого-цифрового преобразователя соединен с входом микроЭВМ, выходы микроЭВМ – соответственно с входом запоминающего устройства, с входом интерфейсного устройства с ПК, с входом устройства управления и с входом информационного табло, выходы устройства управления – соответственно с входом аналогового коммутатора и с входом аналого-цифрового преобразователя, а выход часов – с входом микроЭВМ.
Действительно, в устройстве применены полупроводниковые детекторы газов, измеряющие в широком диапазоне концентрации, что позволяет использовать устройство не только в качестве устройства пороговой сигнализации, но и получать в любой момент времени значения измеренных параметров на информационном табло или пересылать измерительную информацию в персональный компьютер (ПК). Применение микроЭВМ позволяет производить обработку измерительной информации, переходить в режим постоянных измерений и выводить информацию в аналоговый коммутатор, производить фиксацию результатов измерений в запоминающем устройстве по заданным в микроЭВМ программам, а также в случае аварийной ситуации.
Применение запоминающего устройства и часов реального времени позволяют протоколировать через заданные промежутки времени значения измеренных параметров, что позволяет производить детальный анализ причин аварии. Применение полупроводниковых газовых сенсоров позволяет производить измерения в широком диапазоне температур и влажности окружающей среды с одинаковой погрешностью, что не требует температурной компенсации блока физических датчиков и усилителей. Возможность измерения параметров концентрации метана и кислорода позволяет анализировать соотношение их концентраций и предупреждать об образовании взрывоопасных метана и кислорода в концентрациях, близких к соотношению 1:2 (СН4:O2).
Устройство содержит блок тревожной сигнализации, срабатывание которой происходит в случаях:
– превышения предельно-допустимого уровня (ПДУ) по СН4 и СО в контролируемом помещении;
– снижение ниже установленного предела концентрации O2.
После срабатывания тревожной сигнализации устройство производит постоянный контроль всех контролируемых параметров и переходит в режим постоянной передачи информации в ПК.
Блок-схема заявляемого устройства поясняется чертежом.
Устройство содержит 1, 2, 3 – физические датчики концентраций метана – CH4, угарного газа – СО, кислорода – О2, 4 – усилитель сигналов, 5 – аналоговый коммутатор, 6 – аналого-цифровой преобразователь, 7 – микроЭВМ, 8 – запоминающее устройство, 9 – информационное табло для отображения текущей информации, 10 – устройство тревожной сигнализации, 11 – интерфейсное устройство с персональным компьютером IBM-PC, 12 – устройство управления сигнализатором, 13 – часы реального времени, 14 – блок питания, содержащий сетевой адаптер, аккумуляторную батарею резервного питания, зарядное устройство.
Устройство работает следующим образом. После включения напряжения питания производится запуск микроЭВМ 7. Через устройство управления 12 микроЭВМ по введенной в нее программе последовательно включает циклы измерения с трех датчиков. Измерительная информация с выходов датчиков 1, 2 и 3 через усилитель сигналов 4 поступает на вход аналогового коммутатора 5, с выхода которого поступает на вход аналогово-цифрового преобразователя 6. Преобразованный цифровой код поступает в микроЭВМ, которая переводит значения полученного кода в принятые единицы измерения ЭВМ. Далее происходит сравнение его значения в микроЭВМ с предельно допустимым. При включенном режиме протоколирования через определенные отрезки времени измеренные значения с временной отметкой с часов записываются в запоминающем устройстве 8.
В случае, если произойдет превышение установленного значения ПДУ для СН4 и СО или снижение содержания ниже предельного значения для O2, микроЭВМ включает тревожную сигнализацию и переходит в режим протоколирования и прямой передачи информации в персональный компьютер 11. Запрос протокола измерений возможен из персонального компьютера в любой момент времени.
Устройство может работать в следующих режимах:
1. Дежурный, в котором происходит непрерывное измерение величин контролируемых параметров и сравнение с пороговыми значениями ПДК.
2. Режим протоколирования. Через заданные промежутки времени производится запись в энергонезависимую память устройства измеренного значения величин контролируемых параметров.
3. Режим считывания информации. Информация передается из блока запоминающего устройства на интерфейс компьютера.
4. Аварийный режим. В аварийном режиме при превышении ПДУ срабатывает тревожная сигнализация и устройство переходит в режим постоянной передачи измеренных значений концентраций контролируемых параметров.
5. Режим прямой передачи результатов измерений (терминальный режим).
Терминальный режим включается:
1. В случае превышения ПДК.
2. В случае запроса измерительной информации с персонального компьютера.
Блок питания устройства содержит резервный аккумулятор, что позволяет питать устройство длительное время при отключении внешнего питания.
После подачи внешнего питания контроллер аккумулятора производит его зарядку.
Калибровка прибора осуществляется в контрольной газовой камере. Газовый состав камеры контролируется лабораторным газовым хроматографом ЛХМ-8МД.
В газовую камеру помещается газовый сенсор устройства. Калибровка осуществляется по трем концентрациям: минимальная (на уровне фонового), максимальная (на уровне предела измерения) и средняя. Калибровка осуществляется цифровой коррекцией измерительной информации, методом записи в микроЭВМ калибровочных коэффициентов для каждого из трех определяемых газов.
Заявленное устройство реализовано промышленным путем на базе микроконтроллера фирмы ATMEL AT89C51; 14-разрядного АЦП МАХ 14061, аналогового коммутатора К564КП1, часов DS 1208; ЗУ ADS12803; интерфейса с ПК на выпускаемых серийно комплектующих, таких как полупроводниковые газовые сенсоры фирмы ЗАО “Авангард – Микросенсор”, собрана измерительная схема устройства. Корпус содержит два отсека, один негерметичный – с пассивной вентиляцией, с газовыми сенсорами, второй герметичный – с электронной схемой. Устройство предназначено для эксплуатации в жилых, производственных и иных помещениях, поэтому в качестве канала передачи информации в ПК выбрана витая пара. В качестве основного источника питания – электрическая сеть напряжением 220 В. Автономность прибора при питании от аккумулятора не превышает 10 суток.
Источники информации
1. Карпов Е.Ф., Биренгерг И.Э., Басовский Б.И. Автоматическая газовая защита и контроль рудничной атмосферы. М.: Недра, 1984, с.101-109.
2. Патент Российской Федерации №2131601, МКИ 6 G 01 N 27/16, 16.03.98.
Формула изобретения
Устройство для контроля концентраций опасных газов, содержащее измерительную схему, включающую датчик метана, схему обработки измерительной информации, включающую усилитель сигналов, аналоговый коммутатор, аналого-цифровой преобразователь, а также запоминающее устройство, информационное табло и блок питания, отличающееся тем, что измерительная схема дополнительно содержит датчик угарного газа и датчик кислорода, а схема обработки измерительной информации – микроЭВМ, часы и интерфейсное устройство с ПК, при этом датчики измерительной части выполнены в виде полупроводниковых газовых сенсоров, выход аналого-цифрового преобразователя соединен с входом микроЭВМ, выходы микроЭВМ – соответственно с входом запоминающего устройства, с входом интерфейсного устройства с ПК, с входом устройства управления и с входом информационного табло, выходы устройства управления – соответственно с входом аналогового коммутатора и с входом аналого-цифрового преобразователя, а выход часов – с входом микроЭВМ.
РИСУНКИ
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 23.03.2006
Извещение опубликовано: 27.10.2007 БИ: 30/2007
|
|