(21), (22) Заявка: 2003110378/28, 14.04.2003
(24) Дата начала отсчета срока действия патента:
14.04.2003
(43) Дата публикации заявки: 10.11.2004
(45) Опубликовано: 27.05.2005
(56) Список документов, цитированных в отчете о поиске:
SU 1221552 A1, 30.03.1986. SU 661296 A1, 05.05.1979. SU 894475 A1, 30.12.1981. RU 2080584 C1, 27.05.1997.
Адрес для переписки:
454091, г.Челябинск, ул. Тимирязева, 6, МОУ лицей №11, директору А.Г.Гостеву
|
(72) Автор(ы):
Пожбелко В.И. (RU), Чувилев К.В. (RU), Кудинов Д.В. (RU)
(73) Патентообладатель(и):
Муниципальное образовательное учреждение лицей № 11 (МОУ лицей № 11) (RU)
|
(54) СПОСОБ ОПРЕДЕЛЕНИЯ СИЛЫ СОПРОТИВЛЕНИЯ ЖИДКОСТИ
(57) Реферат:
Использование: для исследования сопротивления маловязких жидкостей. Сущность: способ определения силы сопротивления жидкости, заключающийся в том, что чувствительный элемент в виде шарика помещают в испытуемую жидкость, перемещают относительно нее и измеряют параметры движения. Шарик погружают в пределах толщины слоя испытуемой жидкости, после чего его разгоняют в ней вертикально вверх до выхода шарика из жидкости в воздух, а затем тормозят шарик в воздухе до полной остановки, измеряют путь торможения и по этой величине судят о возникающей силе сопротивления жидкости. Технический результат – простота реализации способа, возможность исследования маловязких жидкостей. 1 ил.
Изобретение относится к области экспериментальных способов определения силы гидродинамического сопротивления обтекаемого тела, возникающего при его разгоне в вязкой жидкости, и может найти применение для исследования сопротивления маловязких жидкостей, типа вода, керосин, ацетон.
Известен способ определения силы сопротивления жидкости, заключающийся в том, что обтекаемое твердое тело помещают в бассейн динамометрического типа, затем этому телу задают определенную скорость хода и с помощью тензометрической аппаратуры измеряют силу сопротивления обтекаемого тела в потоке данной жидкости [1].
Недостатками данного способа являются большие габариты бассейна (50 метров), трудоемкость проведения эксперимента.
Известен способ определения силы сопротивления жидкости, заключающийся в том, что чувствительный элемент в виде шарика, закрепленный посредством пружины к опоре, помещают в жидкость, задают ему колебания и измеряют деформацию тензодатчиков, по которой судят о величине возникающей силы сопротивления жидкости [2].
Недостатками указанного способа являются:
1. Сложность реализации способа, так как требуется сложная тензометрическая аппаратура.
2. Невозможность измерения силы сопротивления жидкости, возникающей при разгоне обтекаемого твердого тела в вязкой среде.
Известен способ определения силы сопротивления жидкости, заключающийся в том, что чувствительный элемент в виде шарика, упруго прикрепленный к опоре через мембрану, помещают в колбу с жидкостью, после этого колбе с жидкостью задают движение и измеряют прогиб мембраны с помощью тензодатчиков и по результатам измерений судят о величине силы сопротивления жидкости [3].
Недостатками указанной установки являются:
1. Трудоемкость реализации способа, так как требуется сложная тензометрическая аппаратура.
2. Невозможность измерения силы сопротивления жидкости, возникающей при разгоне обтекаемого твердого тела, так как при движении колбы с ускорением возникают завихрения жидкости, искажающие точность измерений.
Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является способ определения силы сопротивления жидкости, заключающийся в том, что чувствительный элемент в виде шарика, упруго соединенный с ротором двигателя через динамометр, помещают в жидкость, перемещают с постоянной скоростью относительно жидкости, измеряют величину растяжения пружины и по ней судят о возникающей силе сопротивления жидкости [4].
Недостатками этого способа является следующее.
1. Невозможно измерение силы сопротивления жидкости при разгоне обтекаемого твердого тела, так как разгон тела в вязкой среде происходит с переменным ускорением, что вызовет переменное колебание пружины динамометра и нестабильность измерений.
2. Невозможно измерение силы сопротивления маловязких жидкостей, так как в этом случае малая сила сопротивления обусловит незначительную деформацию пружины.
Задачей предлагаемого изобретения является определение силы сопротивления жидкости, возникающей при разгоне обтекаемого тела, а также экспериментальное исследование маловязких жидкостей (воды, керосина, ацетона и т.д.).
Поставленная задача достигается за счет того, что чувствительный элемент в виде шарика погружают в испытуемую жидкость в пределах толщины ее слоя, после чего разгоняют в ней вертикально вверх до выхода шарика из жидкости в воздух, а затем тормозят шарик в воздухе до полной остановки, измеряют путь торможения и по этой величине судят о возникающей силе сопротивления жидкости.
Предлагаемый способ определения силы сопротивления жидкости позволяет измерять указанную силу при разгоне обтекаемого твердого тела в вязкой среде при экспериментальном исследовании маловязких жидкостей (воды, керосина, ацетона).
На чертеже приведен общий вид установки по предлагаемому способу, где 1 емкость с жидкостью, 2 чувствительный элемент в виде шарика.
Предлагаемый способ осуществляется следующим образом.
Чувствительный элемент 2 погружают в емкость с испытуемой жидкостью 1 в пределах толщины ее слоя h и разгоняют его из состояния покоя (скорость шарика =0) движущей силой F1 (сила Архимеда). Под действием движущей силы F1 шарик разгоняется до скорости =0 к моменту его выхода из жидкости в воздух. Затем шарик 2 тормозят в воздухе силой F2 до полной остановки (=0) При этом шарик в воздухе до полной остановки проходит путь торможения, равный H. Измеряя путь H, по его величине судят о возникающей силе сопротивления жидкости следующим образом.
Используя закон сохранения энергии, запишем равенство кинетической энергии шарика массой m в момент выхода из жидкости с работой, совершаемой тормозящей силой F2 на пути торможения H:
получаем следующую зависимость:
С другой стороны, из известного закона Стокса:
где r – радиус шарика, – динамическая вязкость исследуемой жидкости.
Решая совместно (2) и (3), находим искомую зависимость для определения силы сопротивления:
Если тормозящая сила F2 создается в воздухе силой тяжести шарика 2, т.е. F2=mg, то в этом случае зависимость (4) примет вид:
где измеряемая величина Н будет однозначно определять значение сопротивления жидкости Fc.
Достигаемый в результате эксперимента положительный эффект заключается в следующем.
1. Возможность измерения силы сопротивления жидкости, возникающей при разгоне обтекаемого твердого тела в вязкой среде.
2. Возможность экспериментального исследования сопротивления маловязких жидкостей (воды, керосина, ацетона).
3. Простота реализации способа, так как для определения силы сопротивления жидкости не требуется сложной тензометрической аппаратуры, а также использование крупногабаритного бассейна динамометрического типа, что в совокупности позволяет снизить трудоемкость проводимых измерений.
Источники информации
1. Кривоносов Л.М., Сталеров Ю.С. Загадки голубых дорог. М.: изд-во “Просвещение”, 1967, с.89, 90; рис.51 и 52 (аналог).
2. Авторское свидетельство СССР №1160276, бюл.№21, 1985, G 01 N 11/10 (аналог).
3. Авторское свидетельство СССР №1497501, бюл.№28, 1989, G 01 N 11/10 (аналог).
4. Авторское свидетельство СССР №1221552, бюл.№12, 1986, G 01 N 11/10 (прототип).
Формула изобретения
Способ определения силы сопротивления жидкости, заключающийся в том, что чувствительный элемент в виде шарика помещают в испытуемую жидкость, перемещают относительно нее и измеряют параметры движения, отличающийся тем, что шарик погружают в пределах толщины слоя испытуемой жидкости, после чего разгоняют в ней вертикально вверх до выхода шарика из жидкости в воздух, а затем тормозят шарик в воздухе до полной остановки, измеряют путь торможения и по этой величине судят о возникающей силе сопротивления жидкости.
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 15.04.2005
Извещение опубликовано: 20.09.2006 БИ: 26/2006
|