Патент на изобретение №2252220
|
||||||||||||||||||||||||||
(54) СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ХВОИ, КОРЫ И ОТХОДОВ ЗАГОТОВКИ И ПЕРЕРАБОТКИ ДРЕВЕСИНЫ ЛИСТВЕННИЦЫ И СПОСОБ ВЫДЕЛЕНИЯ ДИГИДРОКВЕРЦЕТИНА
(57) Реферат:
Изобретение относится к области комплексной переработки отходов древесины лиственницы с выделением нативных биофлавоноидов, древесных смол, масел, олигосахаридов и нерастворимого биополимера древесины, которые находят применение в органическом синтезе, в пищевой промышленности, технических отраслях, сельском хозяйстве, животноводстве, ветеринарии, медицине. Сущность способа состоит в переработке хвои, коры и отходов заготовки и переработки древесины лиственницы с выделением нативного дигидрокверцетина, содержащего в своем составе 98% основного вещества в составе других биофлавоноидов, порошкового арабиногалактана с содержанием основного вещества 98% и активного углеводно-лигнинового биополимера, путем деструкции исходного сырья и экстракции из него смесью углеводородного растворителя, этилового спирта и воды растворимых веществ с последующим разделением жидкой и твердой фаз и выделением из жидкой фазы природных древесных смол и масел и биофлавоноида – дигидрокверцетина, а из твердой фазы – олигосахарида арабиногалактана и углеводно-лигнинового биополимера древесины. Изобретение позволяет создать эффективный промышленный способ комплексной переработки отходов заготовки и переработки древесины лиственницы с получением с высоким выходом и высокой степенью чистоты ценных целевых продуктов. 2 с. и 4 з.п. ф-лы.
Изобретения относятся к области комплексной переработки отходов древесины лиственницы с выделением нативных биофлавоноидов, древесных смол, масел, олигосахаридов и нерастворимого биополимера древесины. Древесина является нативным природным биополимером, состоящим из нерастворимых в воде углеводов (целлюлоза, гемицеллюлоза) и лигнина, содержит растворимые пентазаны и гексазаны, крахмал, пектины, соли и другие компоненты, а также экстрактивные вещества – терпены, смоляные кислоты, ароматические соединения, растительные полифенолы, стерины, лигнаны, танниды, липиды, жирные кислоты, азотсодержащие соединения. При комплексной переработке древесины лиственницы из нее получают: – древесные смолы и масла, используемые при производстве скипидара, канифоли, органических кислот; – биофлавоноиды: дигидрокверцетин, дигидрокемпферол, нарингенин, находящие применение в качестве антиоксидантов в органическом синтезе, в технике, сельском хозяйстве, производстве пищевых добавок; сырья в ветеринарии, фармацевтической промышленности; – органические соединения – олигосахариды (арабиногалактан), используемые в качестве связующего при производстве таблеток, красок, эмульгатора, биологически активного вещества, в качестве клея; – технические продукты – нативный нерастворимый биополимер древесины, содержащий лигнин и целлюлозу, используемый в качестве сырья для производства микроцеллюлозы, технической целлюлозы, компонента кормов крупного рогатого скота, сорбента, угольных материалов. (Холькин Ю.И. Технология гидролизных производств. М.: Лесная промышленность, 1989). Существующие способы выделения биофлавоноидов из лиственницы с хорошим выходом и высокой степенью чистоты предполагают уже на стадии экстракции использование высоких температур – около 100°С (патент РФ 2114631, А 61 К 35/79, 1998 год), а используемая упрощенная технология выделения дигидрокверцетина высокой степени чистоты не предусматривает использование всей биомассы древесины – менее 20 мас.%, при реализации технологического процесса с утилизацией отходов, возвратом реагентов в цикл и автоматизацией процесса (Патент РФ 2180566, А 61 К 31/351, 2001 год), что создает определенные трудности технического и экономического характера при промышленном освоении переработки древесины лиственницы. Известен способ комплексной переработки древесины лиственницы с выделением комплекса перечисленных выше целевых продуктов, в том числе биофлавоноидов (RU №2135510, кл. С 07 D 311/40, 1998), включающий экстракцию из измельченной древесины природных растворимых веществ несмешивающимися растворителями, включающими н-гексан и водный раствор этилового спирта, при 30-40° С с последующим разделением экстракционной массы на жидкую фазу и твердый шлам, причем жидкую фазу направляют на абсорбцию, осуществляемую при 5-20° С несмешивающимися растворителями, включающими насыщенный водный раствор водорастворимой соли, диэтиловый эфир и н-гексан. При этом из полученного н-гексанового раствора в качестве целевого продукта выделяют природные смолистые вещества вакуумной отгонкой н-гексана. Из спирто-эфирного раствора лиофильной сушкой выделяют биофлавоноиды с последующей их доочисткой препаративной хроматографией с получением целевых биофлавоноидов – дигидрокверцетина и дигидрокемферона. Из полученного экстракта насыщенного раствора водорастворимой соли отделяют дробной кристаллизацией водорастворимую соль, а оставшийся водный раствор полисахаридов после отделения водорастворимой соли подвергают сушке при 80-100° С. Выделенные полисахариды направляют на совместную с твердым шламом обработку фтористым водородом в жидкой углекислоте. Полученные продукты гидролиза путем инверсии переводят в моносахариды с последующим их выделением, а твердые продуты гидролиза, содержащие фторированный лигнин, направляют на стадию карбонизации с получением древесной формы углерода. Данный способ переработки древесины лиственницы позволяет обеспечить коэффициент использования сырья до 85,2%. Однако данный способ недостаточно эффективен из-за большой продолжительности процесса, в частности процессов экстракции и выделения нативных флавоноидов, сложности технологии, требующей большого расхода органических растворителей, а также из-за получения большого количества технологических отходов. Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу является способ переработки древесины лиственницы с выделением комплекса целевых продуктов, в том числе нативных биофлавоноидов (RU №2165416, C 07 D 311/40, 2001). Процесс ведут в две стадии в условиях нахождения компонентов экстракционной массы в псевдоожиженном состоянии, причем на первой стадии в качестве растворителя используют эмульсию неполярного углеводорода алифатического ряда в воде и полученную экстракционную массу после первой стадии разделяют на твердую фазу и водно-углеводородный экстракт, который разделяют на углеводородный раствор природных смол и водный раствор олигосахаридов с последующим выделением природных смол и олигосахаридов (арабиногалактана), а полученную твердую фазу после промывки водой направляют на вторую стадию экстракции, при этом используют в качестве растворителя эмульсию низкокипящего эфира и водного этилового спирта в воде, полученную экстракционную массу со второй стадии разделяют на водно-спирто-эфирный экстракт и твердую фазу – в виде нативного углеродсодержащего полимера древесины, а абсорбцию водно-спирто-эфирного экстракта осуществляют низкокипящим эфиром с последующим выделением из полученных спирто-эфирной и водной фаз соответственно нативных биофлавоноидов дигидрокверцетина, дигидрокемпферола и нарингенина, и арабиногалактана, причем все стадии процесса переработки древесины ведут в атмосфере инертного газа. Перекристаллизацию биофлавоноидов ведут из воды. Недостатками данного способа являются его недостаточная эффективность из-за использования значительных количеств реагентов, в частности растворителей и воды, сложности технологии их регенерации, больших энергетических затрат, приводящих к удорожанию продуктов переработки. Техническим результатом изобретения является создание эффективного промышленного способа комплексной переработки хвои, коры и отходов заготовки и переработки древесины лиственницы с получением с высоким выходом и высокой степенью чистоты целевых продуктов – биофлавоноида дигидрокверцетина, олигосахарида арабиногалактана и углеводно-лигнинового полимера древесины, а также нативных смол и масел, позволяющего сократить продолжительность технологических циклов, уменьшить расход реагентов, упростить технологию их регенерации, а также уменьшить количество технологических отходов. Технический результат достигается тем, что в способе комплексной переработки древесины лиственницы, осуществляемом в атмосфере инертного газа и с системой регенерации всех органических растворителей и воды (рецикл), включающем измельчение влажного исходного сырья, экстракцию из деструктированной древесины природных веществ неполярным углеводородным растворителем алифатического ряда при перемешивании и при повышенной температуре в условиях нахождения компонентов экстракционной массы в псевдоожиженном состоянии, разделение экстракционной массы на жидкий экстракт и твердую фазу, выделение из жидкого экстракта и твердой фазы целевых продуктов, согласно изобретению измельченное исходное сырье с влажностью, не превышающей 30%, подвергают обработке неполярным углеводородным растворителем алифатического ряда, например н-гексаном, или бензином с температурой кипения Ткип Оставшуюся твердую фазу, представляющую собой нативный углеводно-лигниновый полимер древесины, промывают деионизированной водой с последующим отделением образовавшегося маточника арабиногалактана от твердой фазы описанным выше способом с использованием вакуумных заборников и вакуум-импульсного генератора, при этом из жидкой фазы извлекают дополнительное количество арабиногалактана, а полученный после вакуум-импульсного доотделения жидкой фазы твердый продукт представляет собой товарный продукт – активированный углеводно-лигниновый полимер древесины. Технический результат достигается предлагаемым способом выделения нативного биофлавоноида – дигидрокверцетина, из водно-спиртового экстракта, полученного в результате осуществления способа комплексной переработки хвои, коры и отходов заготовки и переработки древесины лиственницы по п.1, который включает очистку раствора от сопутствующих примесей пропусканием его через сорбционную колонну, заполненную активированным углем БАУ-А (международный стандарт, березовый активированный уголь, крупный кусковой), вакуумную отгонку летучих растворителей при температуре не выше 38° С с получением концентрата дигидрокверцетина, с последующей его многоступенчатой очисткой от сопутствующих биофлавоноидов, включающей растворение концентрата в низкокипящем эфире, представляющим собой простой или сложный эфир карбоновых кислот с температурой кипения Ткип Технический результат достигается также тем, что в качестве этилового спирта преимущественно используют абсолютный этиловый спирт; а все органические растворители и вода, используемые в способе, участвуют в рецикле. Пример 1. 1000 г (на сухой вес) отходов заготовки и переработки древесины сибирской (даурской) лиственницы, включающих хвою, кору, вершинники, обрезки, щепу от корневой части и пня, отходы от распиловки и т.д., с влажностью 30%, измельчают до линейных размеров 10,0х1,5х0,2 мм с насыпной плотностью d=0,3-0,35 т/куб.м и подают в блок экстракции объемом 0,1 куб.м, снабженный паровой рубашкой обогрева и мешалкой, и заливают 2000,0 г н-гексана, причем как загрузку реагентов, так и весь последующий технологический процесс ведут в атмосфере инертного газа, например азота. Реакционную массу в количестве 3300 г перемешивают в течение 3 минут при температуре 38° С. Затем с помощью генератора импульсной нагрузки осуществляют импульсный гидроудар путем впрыска дегазированного н-гексана под давлением 10 атм и периодом впрыска Отделенную жидкую фазу, представляющую собой эмульсию, подвергают сепарации с целью разделения н-гексанового экстракта древесных смол и масел и водно-спиртового экстракта биофлавоноидов. Древесные смолы и масла в количестве 92,5 г из экстракта выделяют путем вакуумной отгонки н-гексана в ротационном испарителе. Твердую фазу в количестве 954 г, содержащую 80 г оставшейся жидкой фазы от первой стадии, обрабатывают деионизированной водой с температурой 98° С в количестве 2500 г. Горячую пульпу в количестве 3454 г разделяют на твердую и жидкую фазы. Жидкую фазу откачивают вышеописанным способом с использованием вакуумных заборников и вакуум-импульсного генератора и фильтруют через керамический фильтр с диаметром пор 10 мкм под давлением в 2 атм. Отделенная жидкая фаза в количестве 2659,4 г представляет собой водный раствор арабиногалактана, которую и упаривают до получения водного сиропообразного концентрата арабиногалактана в количестве 350 г (350 мл). Сиропообразный концентрат охлаждают до температуры 4° С, добавляют 100 г насыщенного при этой температуре водного раствора NaCl и из полученного раствора осаждают арабиногалактан путем постепенного введения его солевого водного раствора в 600 мл 94,8%-ного этилового спирта, выпавший осадок отфильтровывают от маточника с получением 149,6 г сырца арабиногалактана. Полученный сырец растворяют при 94-96° С в 2500 мл деионизированной воды, полученный раствор подвергают электродиализу на ультрафильтрационных мембранах “МИФИЛ”, а далее полученный разбавленный в результате диализа раствор вновь упаривают, к полученному после упаривания концентрату добавляют насыщенный уже при комнатной температуре раствор NaCl (1:0,05 по весу) и охлаждают до температуры 4° С. Охлажденный солевой раствор арабиногалактана постепенно вводят в 94,6° С этиловый спирт, выпавший осадок арабиногалактана отфильтровывают и сушат. Получают товарный продукт, представляющий собой порошкообразный арабиногалактан с содержанием основного вещества 98%. Оставшуюся после отделения жидкой фазы, содержащей арабиногалактан, твердую фазу, представляющую собой нативный углеводно-лигниновый полимер древесины в количестве 704,0 г, промывают деионизированной водой, образовавшийся маточник арабиногалактана вновь отделяют от твердой фазы описанным выше способом с использованием вакуумных заборников и вакуум-импульсного генератора, при этом из жидкой фазы извлекают дополнительное количество арабиногалактана. Полученный после вакуумно-импульсного доотделения жидкой фазы твердый продукт в количестве 567,0 г и с влажностью 5 мас.% представляет собой товарный продукт – активированный углеводно-лигниновый полимер древесины. Пример 2. Водно-спиртовый экстракт в количестве 3283,5 г, полученный на первой стадии комплексной переработки отходов заготовки и переработки древесины сибирской (даурской) лиственницы, включающих в свой состав хвою, кору, вершинники, обрезки, щепу от корневой части и пня, отходы от распиловки древесины лиственницы с содержанием биофлавоноидов в количестве 22,7 г направляют на процесс выделения индивидуального биофлавоноида – дигидрокверцетина, который заключается в следующем. Водно-спиртовой экстракт биофлавоноидов пропускают через сорбционную колонну, заполненную активированным углем БАУ-А, для очистки от сопутствующих примесей, затем под вакуумом при температуре не выше 38° С отгоняют летучие растворители до получения сиропообразного концентрата в количестве 200 мл. Полученный концентрат смешивают с 200 мл метилтретбулового эфира. Полученную водно-эфирную смесь растворов биофлавоноидов пропускают через керамический фильтр с диаметром пор 0,05 мкм, смешивают с 1000 мл деионизированной воды, после чего под вакуумом отгоняют эфир, а из оставшегося водного раствора при температуре -10° С кристаллизуют биофлавоноиды в виде их кристаллогидрата, которые содержат ~85% дигидрокверцетина. Из полученного кристаллогидрата готовят насыщенный при температуре 38° С раствор в абсолютном этиловом спирте, охлаждают до 18° С, фильтруют через керамический фильтр с диаметром пор 0,05 мкм, разбавляют в 10 раз деионизированной водой и охлаждают до температуры -10° С, выпавший осадок отделяют от маточника на керамическом фильтре, промывают деионизированной водой, сушат в вакууме до постоянного веса. Полученный продукт, содержащий 94 мас.% дигидрокверцетина в составе других флавоноидов, повторно перекристалл изовывают из предварительно отфильтрованного на керамическом фильтре с размером пор 0,05 мкм водного раствора при температуре, близкой к 0° С. Осадок сушат до постоянного веса в вакууме при остаточном давлении 0,1 атм и температуре 25° С и получают товарный продукт – дигидрокверцетин в количестве 18,4 г с содержанием основного продукта 98% в составе других биофлавоноидов.
Формула изобретения
1. Способ комплексной переработки отходов заготовки и переработки древесины лиственницы, осуществляемый в атмосфере инертного газа и включающий измельчение влажного исходного сырья, экстракцию из деструктированных отходов древесины природных веществ неполярным углеводородным растворителем алифатического ряда при повышенной температуре в условиях нахождения компонентов экстракционной массы в псевдоожиженном состоянии, разделение экстракционной массы на жидкий экстракт и твердую фазу, выделение из жидкого экстракта и твердой фазы целевых продуктов, отличающийся тем, что измельченное исходное сырье с влажностью, не превышающей 30%, подвергают обработке неполярным углеводородным растворителем алифатического ряда при соотношении Т:Ж, равным 1:2,5-3, и температуре, не превышающей 38° С, после чего подвергают пятикратному, с интервалом в 1 мин, импульсному гидроудару посредством импульсного впрыска дегазированного углеводородного растворителя алифатического ряда под давлением Р 2. Способ по п.1, отличающийся тем, что в качестве углеводородного растворителя алифатического ряда используют н-гексан или бензины с температурой кипения Ткип<180° С. 3. Способ выделения нативного дигидрокверцетина путем обработки водно-спиртового экстракта биофлавоноидов, полученного в результате комплексной переработки отходов заготовки и переработки древесины лиственницы по п.1, который включает очистку экстракта от сопутствующих растворимых примесей путем пропускания его через угольную сорбционную колонну, вакуумную отгонку летучих растворителей при температуре не выше 38° С, растворение образовавшегося концентрата в низкокипящем эфире, фильтрацию полученного раствора через керамический или фторопластовый фильтр с диаметром пор не более 0,2 мкм, смешение его с деионизированной водой и последующую вакуумную отгонку эфира, кристаллизацию дигидрокверцетина из полученного водного раствора при температуре 0-(-10° С) с получением его кристаллогидрата, из которого готовят насыщенный при температуре не выше 38° С раствор в этиловом спирте, с содержанием воды не более 4 мас.%, охлаждают до температуры 18-20° С и вновь фильтруют, разбавляют деионизированной водой не менее чем в 10 раз и кристаллизуют дигидрокверцетин при температуре 0-(-10° С), промывают его деионизированной водой и сушат в вакууме до постоянного веса, полученный дигидрокверцетин повторно перекристаллизовывают при температуре, близкой к 0° С, из его водного раствора, предварительно отфильтрованного на керамическом или фторопластовом фильтре с размером пор не более 0,2 мкм. 4. Способ по п.3, отличающийся тем, что в качестве низкокипящего эфира используют простые или сложные эфиры карбоновых кислот с температурой кипения Ткип 5. Способ по п.3, отличающийся тем, что в качестве этилового спирта преимущественно используют абсолютный этиловый спирт. 6. Способ по п.3, отличающийся тем, что в качестве активированного угля используют активированный уголь марки БАУ-А – березовый активированный уголь, крупный кусковой.
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 22.04.2006
Извещение опубликовано: 10.06.2007 БИ: 16/2007
|
||||||||||||||||||||||||||