|
(21), (22) Заявка: 2004120044/28, 02.07.2004
(24) Дата начала отсчета срока действия патента:
02.07.2004
(45) Опубликовано: 10.05.2005
(56) Список документов, цитированных в отчете о поиске:
RU 2064682 C1, 27.07.1996. RU 2178548 C1, 20.01.2002. RU 2162229 С1, 20.01.2001. US 5594170 A, 14.01.1997. US 6691572 В1, 17.02.2004. US 2003/0036215 А1, 20.02.2003. US 6386032 В1, 14.05.2002. US 5894090 А, 13.04.1999. US 4598585, 08.07.1986. ЕР 1271155 А1, 02.01.2003.
Адрес для переписки:
124498, Москва, Зеленоград, пр-д 4806, 5, МИЭТ, каф. Микроэлектроники, С.П. Тимошенкову
|
(72) Автор(ы):
Тимошенков С.П. (RU), Рубчиц В.Г. (RU), Калугин В.В. (RU), Лапенко В.Н. (RU), Шилов В.Ф. (RU), Плеханов В.Е. (RU), Тихонов В.А. (RU), Зотов С.А. (RU), Максимов В.Н. (RU), Чаплыгин Ю.А. (RU)
(73) Патентообладатель(и):
Государственное образовательное учреждение высшего профессионального образования “Московский государственный институт электронной техники (технический университет)” (МИЭТ) (RU)
|
(54) МИКРОМЕХАНИЧЕСКИЙ АКСЕЛЕРОМЕТР
(57) Реферат:
Изобретение относится к инерциальным приборам и может быть использовано в системах управления подвижных объектов различного назначения, а также в качестве индикаторов движения объектов. Акселерометр содержит корпус, чувствительный элемент, выполненный из монокристаллического кремния в виде электропроводящей инерционной массы, представляющей собой маятник, имеющий два плеча и подвешенный с помощью крестообразных торсионов с поперечным сечением в виде X-образного профиля, и электрическую плату, представляющую собой диэлектрическую пластину с двумя парами электродов, симметрично размещенных относительно оси подвеса – соответственно электродов емкостной системы съема перемещений и электродов электростатического датчика момента. Ось симметрии инерционной массы совмещена с осью, проходящей через торсионы подвеса, а маятниковый подвес образован удалением части одного плеча инерционной массы на внешней по отношению к электрической плате поверхности плеча инерционной массы, при этом указанная поверхность выполнена с ребрами жесткости, профиль поперечного сечения которых имеет Т-образную форму, а наклонные грани крестообразных торсионов ориентированы по направлению (111) кристаллографической решетки монокристаллического кремния. Технический результат – повышение точности микромеханического акселерометра и чувствительности при повышении устойчивости и прочности по отношению к линейным перегрузкам и механическим ударам. 3 ил.

Изобретение относится к инерциальным приборам и может быть использовано в системах управления подвижных объектов различного назначения, а также в качестве индикаторов движения объектов.
Известны микромеханические акселерометры (ММА) [1, 2].
Особенностью ММА является преимущественное изготовление чувствительных элементов этих приборов из материалов на основе кремния по кремниевой технологии, что предопределяет: малые габариты и массу приборов; возможность применения групповой технологии изготовления и, следовательно, невысокую стоимость изготовления при массовом производстве; высокую надежность в эксплуатации.
Наиболее близким по своей технической сущности к заявляемому изобретению является микромеханический акселерометр, содержащий корпус, чувствительный элемент, выполненный из монокристаллического кремния в виде электропроводящей инерционной массы, представляющей собой маятник, имеющий два плеча и подвешенный с помощью торсионов, и электрическую плату, представляющую собой диэлектрическую пластину с электродами [3].
Известный ММА [3] обладает следующими существенными недостатками.
Ось симметрии фигуры инерционной массы не совпадает с осью, проходящей через торсионы подвеса, что не обеспечивает симметричность элементов емкостной системы съема перемещений и элементов электростатического датчика момента по отношению к поверхности инерционной массы, обращенной к электрической плате. При этом не симметрируются так называемые “паразитные” электрические емкости. Это оказывает влияние на изменение уровня нулевого сигнала емкостной системы съема перемещений, а также на изменение ее масштабного коэффициента.
Маятниковый подвес обеспечен путем смещения оси симметрии фигуры инерционной массы относительно оси подвеса, проходящей через его торсионы, при этом на внешней, по отношению к электрической плате, стороне большего плеча инерционной массы размещается дополнительный груз, увеличивающий общую массу, увеличивая тем самым изгибные деформации торсионов подвеса по “паразитным” степеням свободы при линейных перегрузках. В результате снижается устойчивость и прочность ММА к линейным перегрузкам и механическим ударам.
Техническим результатом предлагаемого изобретения является повышение точности микромеханического акселерометра, повышение его чувствительности при повышении устойчивости и прочности по отношению к линейным перегрузкам и механическим ударам.
Для достижения поставленной цели в ММА, содержащем корпус, чувствительный элемент, выполненный из монокристаллического кремния в виде электропроводящей инерционной массы, представляющей собой маятник, имеющий два плеча и подвешенный с помощью торсионов, электрическую плату, представляющую собой диэлектрическую пластину с электродами, торсионы выполнены крестообразными с поперечньм сечением в виде Х-образного профиля, электроды симметрично размещены относительно оси подвеса и расположены двумя парами – соответственно электроды емкостной системы съема перемещений и электроды электростатического датчика момента, ось симметрии фигуры инерционной массы совмещена с осью, проходящей через торсионы подвеса, а маятниковый подвес обеспечен удалением части одного плеча инерционной массы на внешней по отношению к электрической плате поверхности плеча инерционной массы, при этом указанная поверхность выполнена с ребрами жесткости, причем профиль поперечного сечения ребер жесткости имеет Т-образную форму, а наклонные грани крестообразных торсионов с профилем поперечного сечения в виде X-образной формы ориентированы по направлению (111) кристаллографической решетки монокристаллического кремния.
Изобретение иллюстрируется графическими материалами, где изображено:
Фиг.1 – конструктивная схема ММА;
Фиг.2 – профиль сечения ребра жесткости;
Фиг.3 – ориентация граней крестообразных торсионов по отношению к кристаллографическим осям монокристаллического кремния.
ММА согласно изобретению содержит (фиг.1) проводящую инерционную массу 1, подвешенную с помощью крестообразных торсионов 2 в корпусе 3. Корпус вместе с подвесом инерционной массы закреплен на электрической плате, представляющей собой диэлектрическую пластину 4 с двумя парами электродов, симметрично расположенных относительно оси подвеса, – соответственно электродов 5 емкостной системы съема перемещений и электродов 6 электростатического датчика момента. Ось симметрии фигуры инерционной массы совпадает с осью Хт, проходящей через торсионы подвеса. Маятниковый подвес обеспечивается удалением массы на внешней стороне одного плеча инерционной массы – на ней сделаны углубления 7, при этом для обеспечения высокой жесткости на изгиб и кручение указанного плеча его поверхность выполнена с ребрами жесткости 8.
Совмещение оси симметрии фигуры инерционной массы с осью, проходящей через торсионы подвеса, обеспечивает симметричность элементов емкостной системы съема перемещений и элементов электростатического датчика момента по отношению к поверхности инерционной массы, обращенной к электрической плате. При этом симметрируются так называемые “паразитные” электрические емкости, что позволяет снизить их влияние на изменение уровня нулевого сигнала емкостной системы съема перемещений, а также на изменение ее масштабного коэффициента.
Выполнение маятникового подвеса удалением части массы с внешней, по отношению к электрической плате, стороны одного плеча инерционной массы снижает ее массу, уменьшая тем самым изгибные деформации торсионов подвеса по “паразитным” степеням свободы при линейных перегрузках. В результате повышается устойчивость и прочность ММА к линейным перегрузкам и механическим ударам. Выполнение указанного выше плеча инерционной массы с ребрами жесткости также снижает ее изгибные и крутильные деформации при перегрузках, при этом наибольшую жесткость обеспечивает профиль поперечного сечения ребер жесткости в виде Т-образной формы (фиг.2).
При ориентации наклонных граней крестообразных торсионов с профилем поперечного сечения Х-образной формы по направлению (111) кристаллографической решетки монокристаллического кремния оси торсиона – Xт, Yт развернуты по отношению к осям Хк, Yк кристаллической решетки кремния в плоскости (100) вокруг оси Zт (Zк) на угол /4 (фиг.3). Такая ориентация осей торсиона по отношению к осям кристаллографической решетки кремния обеспечивает наибольшее отношение Ет/Gт, где Eт – модуль Юнга для изгибных деформаций торсиона в направлениях, перпендикулярных к оси Хт торсиона; Gт – модуль сдвига для крутильных деформаций вокруг этой оси. Для указанной ориентации осей торсиона соотношение Ет/Gт таково [3]:
(Ет/Gт) (1,3Ек)/(0,64Gк),
где Gк, Eк – соответственно модуль сдвига и модуль Юнга для осей кристаллической решетки кремния.
Таким образом, поскольку крутильная и изгибные жесткости торсиона прямо пропорциональны соответственно модулям Gт и Ет, крутильная жесткость вокруг оси Хт торсиона будет минимальной, а его изгибная жесткость – максимальной. В результате подвес инерционной массы ММА обеспечивает высокую чувствительность к измеряемому ускорению и высокие устойчивость и прочность к линейным перегрузкам и механическим ударам.
Испытания опытных образцов ММА подтвердили высокую эффективность предложенных технических решений.
Источники информации:
1. RU 2064682 С1 (Ачильдиев В.М. и др.), 27.07.1996.
2. US 5594170 (Peters Rex В.), Jan. 14, 1997.
3. Захаров Н.П., Багдасарян А.В. Механические явления в интегральных структурах. – М.: Радио и связь, 1992. – С.72-75.
Формула изобретения
Микромеханический акселерометр, содержащий корпус, чувствительный элемент, выполненный из монокристаллического кремния в виде электропроводящей инерционной массы, представляющей собой маятник, имеющий два плеча и подвешенный с помощью торсионов, и электрическую плату, представляющую собой диэлектрическую пластину с электродами, отличающийся тем, что торсионы выполнены крестообразными с поперечным сечением в виде Х-образного профиля, электроды симметрично размещены относительно оси подвеса и расположены двумя парами – соответственно электродов емкостной системы съема перемещений и электродов электростатического датчика момента, ось симметрии инерционной массы совмещена с осью, проходящей через торсионы подвеса, а маятниковый подвес образован удалением части одного плеча инерционной массы на внешней по отношению к электрической плате поверхности плеча инерционной массы, при этом указанная поверхность выполнена с ребрами жесткости, причем профиль поперечного сечения ребер жесткости имеет Т-образную форму, а наклонные грани крестообразных торсионов ориентированы по направлению (111) кристаллографической решетки монокристаллического кремния.
РИСУНКИ
QB4A Регистрация лицензионного договора на использование изобретения
Лицензиар(ы): Государственное образовательное учреждение высшего профессионального образования “Московский государственный институт электронной техники (технический университет)” (МИЭТ)
НИЛ
Лицензиат(ы): Закрытое акционерное общество “ИДМ-ПЛЮС”
Договор № РД0022955 зарегистрирован 07.06.2007
Извещение опубликовано: 20.07.2007 БИ: 20/2007
* ИЛ – исключительная лицензия НИЛ – неисключительная лицензия
|
|