Патент на изобретение №2250936

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2250936 (13) C1
(51) МПК 7
C25D3/56
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.01.2011 – прекратил действие

(21), (22) Заявка: 2003128355/02, 19.09.2003

(24) Дата начала отсчета срока действия патента:

19.09.2003

(45) Опубликовано: 27.04.2005

(56) Список документов, цитированных в отчете о
поиске:
ЛЕВИНЗОН А.М. Электролитическое осаждение металлов подгруппы железа. Л., Машиностроение, 1983, с. 96. SU 956629 A, 07.09.1982. SU 264099 A, 03.06.1970. US 4440609 A, 03.04.1984.

Адрес для переписки:

305021, г.Курск, ул. К. Маркса, 70, КГСХА, патентный отдел

(72) Автор(ы):

Серебровский В.И. (RU),
Серебровская Л.Н. (RU),
Серебровский В.В. (RU),
Сафронов Р.И. (RU),
Коняев Н.В. (RU)

(73) Патентообладатель(и):

Курская государственная сельскохозяйственная академия им. проф. И.И. Иванова (RU)

(54) СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-БОР

(57) Реферат:

Изобретение относится к области электролитического осаждения твердых износостойких покрытий, в частности железоборных покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Способ включает осаждение покрытия из электролита, содержащего, кг/м3: борную кислоту 2,5-60, железо хлористое (II) 300-450, соляную кислоту 0,5-1,5 и воду, на переменном асимметричном токе с коэффициентом асимметрии 1,2-6, с катодной плотностью тока 15-60 А/дм2 при температуре электролита 20-40°С и кислотности рН 0,8. Технический результат: повышение производительности, скорости осаждения, снижение температуры электролита, увеличение прочности сцепления покрытия с основой, микротвердости и износостойкости.

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоборных покрытий, применяемых для восстановления и упрочнения поверхностей деталей.

Известен способ электролитического осаждения из хлористого электролита железнения, содержащего 200-250 кг/м3 хлористого железа и 2-3 кг/м3 соляной кислоты (Мелков М.П. Твердое осталивание автотракторных деталей. М.: Транспорт, 1971. с.19-20). Однако этот электролит работает при высокой температуре (60-80°С) и обеспечивает получение покрытий со значением микротвердости 4500-6500 МПа.

За прототип взят способ для осаждения электролитического покрытия из электролита, содержащего: хлорное железо (или сернокислое, трехвалентное) 80-120 кг/м3, триэтаноламин 150-170 кг/м3, трилон Б 120-140 кг/м3, едкий натр 80-100 кг/м3, боргидрид натрия 0,5-1,0 кг/м3. Осаждение покрытия проходит на постоянном токе (Левинзон А.М. Электролитическое осаждение металлов подгруппы железа. – Л.: Машиностроение, Ленингр. отд-ние, 1983. – 96 с., ил. – (Б-чка гальванотехника / Под ред. П.М. Вячеславова; Вып.3)).

Недостатком данного способа является ограниченная микротвердость покрытия, низкая прочность сцепления покрытия с основой, низкая скорость осаждения покрытия и использование высоких температур электролита.

Для устранения вышеперечисленных недостатков предлагается способ электролитического осаждения сплава железо – бор, который имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение происходит при высоких катодных плотностях тока и низких температурах электролита, что обеспечивает высокую скорость осаждения покрытий. Получаемые покрытия обладают высокой прочностью сцепления с основой, высокой микротвердостью и износостойкостью. Осаждение происходит из электролита, содержащего: борную кислоту, железо хлористое (II), соляную кислоту при следующем соотношении компонентов, кг/м3:

борная кислота 2,5-60

железо хлористое (II) 300-450

соляная кислота 0,5-1,5

Электролиз ведется при температуре 20-40°С на переменном асимметричном токе с интервалом катодных плотностей тока 15-60 А/дм2 и коэффициентом асимметрии =1,2-6. Кислотность электролита находится в пределах рН 0,8.

Электролит получают соединением водного раствора хлористого железа и борной кислоты.

Борная кислота находится в пределах 2,5-60 кг/м3. Нижний предел обусловлен тем, что при содержании менее 2,5 кг/м3 борной кислоты не происходит заметного изменения физико-механических свойств покрытия. Верхний предел ограничивается содержанием борной кислоты 60 кг/м3. При содержании больше 60 кг/м3 происходит интенсивное образование окислов бора, что резко снижает физико-механические свойства электролитического покрытия: уменьшается прочность сцепления покрытия, падает микротвердость, возрастает пористость и шероховатость покрытия.

Концентрация хлористого железа находится в пределах 300-450 кг/м3. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности (Швецов А.Н. Основы восстановления деталей осталиванием. Омск, 1973, с.77-79).

Содержание соляной кислоты находится в пределах 0,5-1,5 кг/м3. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разрежением водорода. С повышением содержания соляной кислоты резко увеличивается количество разрежающегося водорода и падает выход по току. Нижний предел выбран по качественным характеристикам структур электролитического железа. При содержании соляной кислоты меньше 0,5 кг/м3 происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытия и этим ухудшает их структуру.

Температурный интервал находится в пределах 20-40°С. Нижний предел ограничен диффузионными свойствами электролита. Движение ионов замедленное и скорость осаждения покрытия низкая. Выше 40°С использование электролита невыгодно с экономической точки зрения. Качественного изменения покрытия не происходит, однако увеличиваются затраты на подогрев электролита.

Катодная плотность тока находится в пределах 15-60 А/дм2. Ниже 15 А/дм2 плотность тока использовать нецелесообразно, т.к. процесс электролиза имеет низкую скорость осаждения покрытия. При катодной плотности тока выше 60 А/дм2 происходит сильное дендритообразование и резко снижается выход по току.

Начало осаждения покрытия происходит начиная с коэффициента асимметрии =1,2, который обеспечивает высокую сцепляемость покрытия с основой, Gсц=300 МПа. Если коэффициент асимметрии ниже 1,2, осаждение не происходит. В процессе электроосаждения коэффициент асимметрии постепенно повышают до =6, который характеризуется высокой и стабильной скоростью осаждения покрытия. Дальнейшее повышение коэффициента асимметрии не рекомендуется, т.к. с дальнейшим снижением анодной составляющей процесс переходит на режим, близкий к постоянному току. Благодаря разным значениям коэффициента асимметрии можно получать покрытия с различными физико-механическими свойствами.

На основе проведенных испытаний оптимальными условиями способа электроосаждения сплава железо – бор являются условия, приведенные в примере.

Электролит состоит из следующих компонентов в количестве, кг/м3:

борная кислота 50

железо хлористое (II) 350

соляная кислота 1,0

Процесс электролитического осаждения покрытия ведут при температуре 40°С и катодной плотности тока 40 А/дм2. Процесс осаждения начинают при =1,2 и постепенно в течение 3-5 минут повышают до =5. Покрытие имеет Gсц=300 МПа, микротвердость H=9000 МПа, скорость осаждения 0,35 мм/ч.

Предлагаемый способ имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение покрытия происходит при высокой катодной плотности тока и имеет высокую скорость осаждения покрытия. Покрытия, полученные предлагаемым способом, обладают высокой микротвердостью и износостойкостью, что позволяет их использовать в народном хозяйстве для восстановления и упрочнения поверхностей деталей машин.

Формула изобретения

Способ электролитического осаждения сплава железо-бор из электролита, содержащего борную кислоту, хлористое железо (II), соляную кислоту, отличающийся тем, что осаждение ведут из электролита, содержащего, кг/м3:

Борная кислота 2,5-60

Железо хлористое (II) 300-450

Соляная кислота 0,5-1,5

на переменном асимметричном токе с коэффициентом асимметрии 1,2-6, при катодной плотности тока 15-60 А/дм2, температуре электролита 20-40°С, кислотности электролита рН 0,8.


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 20.09.2005

Извещение опубликовано: 27.01.2007 БИ: 03/2007


Categories: BD_2250000-2250999