Патент на изобретение №2250410
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОВЫШЕНИЯ ДОЛГОВЕЧНОСТИ ТРИБОСИСТЕМЫ
(57) Реферат:
Способ предназначен для повышения долговечности трущихся элементов машин и механизмов. Способ заключается в том, что в зону подают ионообразующую жидкость, содержащую присадки, и подводят напряжение к восстанавливаемой детали трибосистемы – катоду и растворяющемуся элементу – аноду. Анод размещен в трибосистеме. Контролируют параметры трибосистемы и при их отклонении от заданных изменяют ток в цепи катод-анод. В качестве контролируемого параметра используют давление, температуру, шум, вибрацию в трибосистеме. Скорость восстановления деталей трибосистемы регулируют путем изменения концентрации, токопроводности, температуры, состава ионообразующей жидкости, количества, конструкции, материала растворяющихся элементов-анодов. Для получения необходимого качества обработки поверхности трения регулируют давление в трибосистеме, скорость перемещения восстанавливаемых деталей трибосистемы. Технический результат – повышение долговечности трибосистем, работающих в условиях высоких динамических нагрузок. 6 з.п. ф-лы.
Изобретение относится к области машиностроения, в частности к способам повышения долговечности трущихся элементов машин и механизмов. Известны способы повышения долговечности деталей путем нанесения на поверхность трения износостойких покрытий, заключающиеся в гальванических методах осаждения износостойких металлов /1/. Однако эти способы трудоемки и требуют значительного времени на выполнение, присутствия химически активных сред и не всегда позволяют достичь желаемых результатов при значительных материальных затратах. Наиболее близким к изобретению по технической сущности к достигаемому техническому результату является способ стабилизации состояния трибосистемы, заключающийся в том, что в зону трения подают ионообразующую жидкость и подводят напряжение к восстанавливаемой части трибосистемы – катоду и растворяющемуся элементу – аноду, размещенному в трибосистеме, выполненным из материалов с разными собственными электрохимическими потенциалами /2/. Недостатком известного способа являются недостаточные эффективность процесса и качество обработки трущихся поверхностей. Это не позволяет достичь требуемых результатов по увеличению долговечности трибосистемы, работающей в жестких условиях высоких динамических нагрузок. Технический результат, создаваемый изобретением, состоит в повышении долговечности трибосистем, работающих в условиях высоких динамических нагрузок. Указанный результат достигается тем, что при осуществлении известного способа, заключающегося в том, что в зону трения подают ионообразующую жидкость, содержащую присадки, и подводят напряжение к восстанавливаемой детали трибосистемы – катоду и растворяющемуся элементу – аноду, размещенному в трибосистеме, в ходе которого контролируют параметры трибосистемы и при их отклонении от заданных изменяют ток в цепи катод-анод. В заявленном изобретении в качестве контролируемого параметра используют давление, температуру, шум, вибрацию в трибосистеме, а скорость восстановления деталей трибосистемы регулируют путем изменения концентрации, токопроводности, температуры, состава ионообразующей жидкости, количества, конструкции, материала растворяющихся элементов – анодов, а для получения необходимого качества обработки поверхности трения регулируют давление в трибосистеме, скорость перемещения восстанавливаемых деталей трибосистемы. На первом этапе включают обратную полярность питания: “плюс” – к восстанавливаемой детали трибосистемы, а “минус” – к растворяющемуся элементу – аноду, для снятия оксидной пленки, а на втором этапе включают прямую полярность. Процесс проводят при асимметричном токе, при отношении прямого тока к обратному 10:1…100:1 и при длительности импульсов: прямой полярности 1…10 мс, обратной – 0,01…10 мс. Кроме того, процесс проводят при воздействии на ионообразующую жидкость ультразвука с рабочей частотой 16…30 кГц. Величину тока в цепи катод-анод задают в программируемом режиме от постоянного до импульсного, с изменяемой частотой, скважностью и амплитудой. Напряжение в цепи катод-анод подключают и отключают внешним воздействием. Трибосистему снабжают элементами (датчиками), регистрирующими параметры внешней среды и технологического процесса. Осуществление предложенного способа производится следующим образом: трибосистема, детали которой работают при высоких нагрузках, состоит из: ионообразующей жидкости; подключенных к источнику тока – анода (растворяющегося элемента) и катода (восстанавливаемого элемента); датчиков, регистрирующих параметры системы и внешней среды; управляющего процессора; источника тока и согласующих элементов. В процессе работы трибосистемы под действием электрического тока анод растворяется, при этом ионы металла рабочей жидкостью транспортируются к трущимся (восстанавливаемым) деталям и осаждаются на рабочих поверхностях. Растворяемый анод подключен к положительному полюсу источника тока, а восстанавливаемая деталь к отрицательному для снятия оксидной пленки, на первом этапе включают обратную полярность питания: “плюс” – к восстанавливаемой детали трибосистемы, а “минус” – к растворяющемуся элементу – аноду, а на втором этапе включают прямую полярность. Интенсивность процесса восстановления возрастает с увеличением силы тока, проходящего через ионообразующую жидкость в зоне контакта поверхностей трения. Процесс проводят при асимметричном токе, при отношении прямого тока к обратному 10:1…100:1 и при длительности импульсов: прямой полярности 1…10 мс, обратной 0.01…10 мс. Процессом восстановления управляет процессор, который получает сведения о состоянии трибосистемы от различных датчиков, находящихся в системе и вне ее. Плотность тока в системе катод-анод составляет примерно 3…45 А/дм2. Процесс электрохимического растворения анода начинается при разности потенциалов между катодом и анодом, превышающих суммарный потенциал поляризации электродов, и находится в пределах 3…30 В. Для стабилизации электродных процессов при работе трибосистемы и удалении частиц, образующихся при абразивном износе пар трения, применяют принудительную подачу в рабочую зону ионообразующей жидкости, т.е. прокачивают ее под давлением. В качестве ионообразующей жидкости применяют слабые растворы солей, кислот, щелочей, при концентрации в 100…200 г/л, с добавлением необходимых присадок. Удельная электропроводность ионообразующей жидкости, в зависимости от концентрации компонентов, при его температуре, равной 18°С, выбирается в пределах 8…28 См/м, при кинематической вязкости 0,9…3,5·106 м2/с. Температура ионообразующей жидкости должна поддерживаться в пределах от 16 до 65°С. Скорость протекания ионообразующей жидкости в зоне трения до 2 см/с. Диапазон частот ультразвукового воздействия на элементы трения равен 16…30 кГц. Величину тока в цепи катод-анод задают в программируемом режиме от постоянного до импульсного, с изменяемой частотой, скважностью и амплитудой. Для возможности дистанционного управления процессом напряжения в цепи катод-анод подключают и отключают внешним воздействием. Для контроля за процессом трибосистему снабжают элементами (датчиками), регистрирующими параметры внешней среды и технологического процесса. Использование предлагаемого способа повышения долговечности трибосистемы позволяет снизить износ элементов трибосистемы, повысить ресурс изделия. Одновременно снижается расход горюче-смазочных материалов примерно на 10%, особенно в период приработки, а также снижается трудоемкость при проведении обслуживания узлов и агрегатов трибосистемы. Источники информации 1. Зозуля В.В. и др. Словарь-справочник по трению, износу и смазке деталей машин. 2-е издание. – Киев, Наумова Думка, 1990, с.168, 248. 2. Авторское свидетельство СССР, №687374, МКИ G 01 N 3/56, 1979.
Формула изобретения
1. Способ повышения долговечности трибосистемы, заключающийся в том, что в зону трения подают ионообразующую жидкость, содержащую присадки, и подводят напряжение к восстанавливаемой детали трибосистемы – катоду и растворяющемуся элементу – аноду, размещенному в трибосистеме, в ходе которого контролируют параметры трибосистемы и при их отклонении от заданных изменяют ток в цепи катод – анод, отличающийся тем, что в качестве контролируемого параметра используют давление, температуру, шум, вибрацию в трибосистеме, а скорость восстановления деталей трибосистемы регулируют путем изменения концентрации, токопроводности, температуры, состава ионообразующей жидкости, количества, конструкции, материала растворяющихся элементов-анодов, а для получения необходимого качества обработки поверхности трения регулируют давление в трибосистеме, скорость перемещения восстанавливаемых деталей трибосистемы. 2. Способ по п.1, отличающийся тем, что на первом этапе включают обратную полярность питания: “плюс” – к восстанавливаемой детали трибосистемы, а “минус” – к растворяющемуся элементу-аноду, для снятия оксидной пленки, а на втором этапе включают прямую полярность. 3. Способ по п.1, отличающийся тем, что процесс проводят при асимметричном токе при отношении прямого тока к обратному 10:1…100:1 и при длительности импульсов прямой полярности 1…10 мс, обратной – 0,01…10 мc. 4. Способ по п.1, отличающийся тем, что процесс проводят при воздействии на ионообразующую жидкость ультразвука с рабочей частотой 16…30 кГц. 5. Способ по п.1, отличающийся тем, что величину тока в цепи катод – анод задают в программируемом режиме от постоянного до импульсного с изменяемыми частотой, скважностью и амплитудой. 6. Способ по п.1, отличающийся тем, что напряжение в цепи катод – анод подключают и отключают внешним воздействием. 7. Способ по п.1, отличающийся тем, что трибосистему снабжают элементами (датчиками), регистрирующими параметры внешней среды и технологического процесса.
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 17.07.2005
Извещение опубликовано: 27.04.2007 БИ: 12/2007
|
||||||||||||||||||||||||||