Патент на изобретение №2249704

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2249704 (13) C1
(51) МПК 7
F01K13/00
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.01.2011 – прекратил действие

(21), (22) Заявка: 2003132007/06, 31.10.2003

(24) Дата начала отсчета срока действия патента:

31.10.2003

(45) Опубликовано: 10.04.2005

(56) Список документов, цитированных в отчете о
поиске:
ОЛИКЕР И.И. и др. Термическая деаэрация воды на тепловых электростанциях, Ленинград, Энергия, 1971, с.130, рис.3-7. RU 2174182 C1, 27.09.2001. RU 2174181 C1, 27.09.2001. RU 2174183 C1, 27.09.2001. RU 2175390 C1, 27.10.2001. US 5165237 A, 24.11.1992. DE 3726786 A1, 23.02.1989.

Адрес для переписки:

432027, г.Ульяновск, ул. Северный Венец, 32, Ульяновский государственный технический университет (УлГТУ), Проректору по научной работе

(72) Автор(ы):

Шарапов В.И. (RU),
Макарова Е.В. (RU)

(73) Патентообладатель(и):

Ульяновский государственный технический университет (RU)

(54) ТЕПЛОВАЯ ЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ

(57) Реферат:

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. Техническим результатом, достигаемым заявленным изобретением, является повышение экономичности и надежности тепловой электрической станции. Для достижения этого результата предложена тепловая электрическая станция, содержащая паровую турбину с трубопроводом основного конденсата, подключенным к деаэратору повышенного давления, деаэратор добавочной питательной воды с трубопроводами исходной воды и греющего агента. Станция снабжена регулятором содержания растворенного кислорода в смешанном потоке основного конденсата и добавочной питательной воды, регулятор соединен с датчиком содержания кислорода, подключенным к трубопроводу основного конденсата за пределами вакуумной системы турбоустановки, например за вторым по ходу основного конденсата подогревателем низкого давления, и с регулирующим органом, установленным на трубопроводе греющего агента деаэратора добавочной питательной воды. 1 ил.

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях.

Известны аналоги – тепловые электрические станции, содержащие паровую турбину с трубопроводом основного конденсата, подключенным к деаэратору повышенного давления, деаэратор добавочной питательной воды с трубопроводами исходной воды и греющего агента (см. Оликер И.И., Пермяков В.А. Термическая деаэрация воды на тепловых электростанциях. Л.: Энергия. 1971. Рис.3-7. С. 130). Этот аналог принят в качестве прототипа.

Недостатками аналогов и прототипа являются пониженная надежность и экономичность тепловой электростанции из-за недостаточного качества потоков питательной воды и увеличенных энергозатрат на деаэрацию добавочной питательной воды. В частности, при увеличении присосов воздуха в вакуумную систему турбоустановки, например, при изменении режима работы турбоустановки ухудшается качество потоков питательной воды, подаваемой в деаэратор повышенного давления. С другой стороны, при высокой герметичности вакуумной системы турбоустановки имеют место повышенные энергозатраты на работу деаэратора добавочной питательной воды, несмотря на достаточное качество смешанного потока основного конденсата и добавочной питательной воды, подаваемого в деаэратор повышенного давления.

Техническим результатом, достигаемым настоящим изобретением, является повышение экономичности и надежности тепловой электрической станции путем обеспечения высокого качества потоков питательной воды перед деаэратором повышенного давления при различных режимах работы турбоустановки, а также путем снижения энергозатрат на деаэрацию добавочной питательной воды.

Для достижения этого результата предложена тепловая электрическая станция, содержащая паровую турбину с трубопроводом основного конденсата, подключенным к деаэратору повышенного давления, деаэратор добавочной питательной воды с трубопроводами исходной воды и греющего агента.

Особенность заключается в том, что тепловая электростанция снабжена регулятором содержания растворенного кислорода в смешанном потоке основного конденсата и добавочной питательной воды, регулятор соединен с датчиком содержания кислорода, подключенным к трубопроводу основного конденсата за пределами вакуумной системы турбоустановки, например за вторым по ходу основного конденсата подогревателем низкого давления, и с регулирующим органом, установленным на трубопроводе греющего агента деаэратора добавочной питательной воды.

Новая взаимосвязь элементов позволяет повысить надежность и экономичность работы тепловой электрической станции за счет гарантированного обеспечения заданной величины содержания растворенного кислорода в смешанном потоке основного конденсата и добавочной питательной воды за пределами вакуумной системы турбоустановки, т.е. понизить интенсивность внутренней коррозии трубопровода основного конденсата, вызванной присосами воздуха в вакуумную систему турбоустановки, а также снизить энергозатраты на деаэрацию добавочной питательной воды.

Далее рассмотрим сведения, подтверждающие возможность осуществления изобретения с получением искомого технического результата.

На чертеже изображена принципиальная схема тепловой электрической станции, поясняющая предложенный способ. Станция содержит котел 1, паровую турбину 2 с отопительными отборами, конденсатор, трубопровод основного конденсата турбины 4 с включенными в него конденсатным насосом и регенеративными подогревателями низкого давления 3, вакуумный деаэратор добавочной питательной воды 5 с трубопроводом греющего агента 6. Вакуумный деаэратор 5 снабжен регулятором содержания растворенного кислорода 7 в смешанном потоке основного конденсата и добавочной питательной воды, который соединен с датчиком содержания кислорода 8, подключенным к трубопроводу основного конденсата за пределами вакуумной системы турбоустановки, например за вторым по ходу основного конденсата подогревателем низкого давления, после точки подключения трубопровода деаэрированной добавочной питательной воды, и с регулирующим органом 9, установленным на трубопроводе греющего агента вакуумного деаэратора добавочной питательной воды.

Рассмотрим пример реализации заявленного способа работы тепловой электрической станции.

Вырабатываемый в котле 1 пар направляют в турбину 2, отработавший в турбине пар конденсируют в конденсаторе, основной конденсат турбин конденсатным насосом подают в регенеративные подогреватели низкого давления 3. Утечки питательной воды из пароводяного цикла тепловой электростанции компенсируют добавочной питательной водой, которую деаэрируют в вакуумном деаэраторе 5, для чего в деаэратор по трубопроводу 6 подают греющий агент, и направляют в тракт основного конденсата турбин 4. Регулирование расхода греющего агента вакуумного деаэратора производят с помощью регулирующего органа 9, регулятора 7 и датчика 8 по заданной величине содержания растворенного кислорода в смешанном потоке добавочной питательной воды и основного конденсата турбин за пределами вакуумной системы турбоустановки, например за вторым по ходу основного конденсата подогревателем низкого давления. Датчиком 8 измеряют остаточное содержание кислорода в смешанном потоке основного конденсата и добавочной питательной воды и, при отклонении его от заданного, например вследствие увеличения присосов воздуха в вакуумную систему турбоустановки или ухудшения качества деаэрации добавочной питательной воды, регулятор расхода 7 с помощью регулирующего клапана 9 повышает расход греющего агента на вакуумный деаэратор добавочной питательной воды 5, устанавливая тем самым его величину необходимой и достаточной для поддержания заданной величины остаточного содержания кислорода в смешанном потоке основного конденсата турбин и добавочной питательной воды за пределами вакуумной системы турбоустановки. Напротив, при уменьшении присосов воздуха в вакуумную систему турбоустановки или повышении качества вакуумной деаэрации добавочной питательной воды по импульсу от датчика содержания растворенного кислорода 8, подаваемого на регулятор 7, с помощью регулирующего органа 9 снижают расход греющего агента в вакуумный деаэратор добавочной питательной воды 5. Далее производят деаэрацию смешанного потока основного конденсата и добавочной питательной воды в деаэраторе повышенного давления и затем питательным насосом прокачивают через подогреватели высокого давления и подают в паровой котел.

Таким образом, предложенное решение позволяет повысить надежность и экономичность тепловой электрической станции за счет снижения интенсивности внутренней коррозии, вызванной повышенным содержанием растворенного кислорода в воде, и снижения энергозатрат на деаэрацию добавочной питательной воды.

Формула изобретения

Тепловая электрическая станция, содержащая паровую турбину с трубопроводом основного конденсата, подключенным к деаэратору повышенного давления, деаэратор добавочной питательной воды с трубопроводами исходной воды и греющего агента, отличающаяся тем, что станция снабжена регулятором содержания растворенного кислорода в смешанном потоке основного конденсата и добавочной питательной воды, регулятор соединен с датчиком содержания кислорода, подключенным к трубопроводу основного конденсата за пределами вакуумной системы турбоустановки, например за вторым по ходу основного конденсата подогревателем низкого давления, и с регулирующим органом, установленным на трубопроводе греющего агента деаэратора добавочной питательной воды.

РИСУНКИ


MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 01.11.2005

Извещение опубликовано: 20.03.2007 БИ: 08/2007


Categories: BD_2249000-2249999