Патент на изобретение №2245897

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2245897 (13) C1
(51) МПК 7
C10K1/12, B01D53/14, B01D53/52
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.01.2011 – прекратил действие

(21), (22) Заявка: 2003130246/15, 10.10.2003

(24) Дата начала отсчета срока действия патента:

10.10.2003

(45) Опубликовано: 10.02.2005

(56) Список документов, цитированных в отчете о
поиске:
М.С.ЛИТВИНЕНКО, Очистка коксового газа от сероводорода, Вакуум-карбонатный метод, Харьков, Металлургиздат, 1959, с.108. SU 1478994 A3, 07.05.1989. SU 955991 A, 07.09.1982. RU 2139751 C1, 20.10.1999. DE 3313544 A1, 18.10.1984. GB 2167738 A, 04.06.1986. CZ 290636 A, 11.09.2002. EP 0204847 A2, 17.12.1986.

Адрес для переписки:

630090, г.Новосибирск, Морской пр-т, 48-29, Л.К. Чучалину

(72) Автор(ы):

Чучалин Л.К. (RU),
Ханин В.М. (RU),
Резвухин А.И. (RU),
Покровский А.Л. (RU),
Фёдоров В.В. (RU),
Рязановский Д.В. (RU)

(73) Патентообладатель(и):

Чучалин Лев Климентьевич (RU),
Ханин Владимир Моисеевич (RU),
Федоров Владимир Владимирович (RU),
Рязановский Дмитрий Владимирович (RU)

(54) СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКИХ ГАЗОВ ОТ СЕРОВОДОРОДА

(57) Реферат:

Изобретение относится к области очистки от сероводорода СО2-содержащих технологических газов, в частности отходящих газов производств, осуществляющих термическую обработку в восстановительной среде серусодержащих горючих полезных ископаемых. Способ очистки технологических газов от сероводорода включает противоточный контакт газов с жидким основным поглотителем, абсорбцию сероводорода поглотителем, отделение сероводорода от сопутствующего диоксида углерода и перевод сероводорода в утилизируемые продукты. В качестве поглотителя используют водные растворы или суспензии гидроксидов или оксидов щелочных или щелочноземельных металлов, а сероводород отделяют от диоксида углерода на стадии контакта газов с поглотителем, извлекая им лишь сероводород, за счет проведения контакта в вихревых камерах с вращающимся газожидкостным слоем при продолжительности пребывания газов в слое от 0,001 до 0,1 сек. Технический результат – повышение степени очистки газов от сероводорода и упрощение схемы очистки. 1 ил.

Изобретение относится к области очистки от сероводорода СО2-содержащих технологических газов, в частности отходящих газов производств, осуществляющих термическую обработку в восстановительной среде серусодержащих горючих полезных ископаемых (коксование и газификация углей и др.).

Известны способы очистки СО2-содержащих технологических газов от сероводорода путем контакта газов с водными растворами основных соединений – гидроксида железа (+3), соды, аминов (J.H.Currey. Iron Steel Eng. 72, 10, 1995, Р.10; З.Р.Исмагилов, М.А.Керженцев, С.Р.Хайрулин, В.В.Кузнецов. Одностадийные каталитические методы очистки кислых газов от сероводорода. Химия в интересах устойчивого развития, 7, 1999, с.376).

Известен способ очистки от сероводорода газов коксохимических производств, являющийся одновременно прототипом предлагаемого изобретения (М.С.Литвиненко. Очистка коксового газа от сероводорода. Вакуум-карбонатный метод. Харьков. Металлургиздат, 1959). Способ включает три стадии. На первой из газа улавливают сероводород путем противоточного контакта с 5%-ным водным раствором Na23 в оросительной башне-абсорбере при расходе абсорбента 2-4 дм3 на 1 м3 газа, продолжительности пребывания газа в зоне абсорбции башни 3 секунды и температуре 30-45°С. При содержании сероводорода в исходном газе 19-20 г/м3 (около 1,3 об.%) степень извлечения Н2S в абсорбент составляет 83,5-93,2%, а содержание Н2S в абсорбенте достигает 5,4-9,9 г/дм3. Вместе с сероводородом в абсорбент частично извлекается сопутствующий ему диоксид углерода; степень его извлечения из газа в описанных условиях составляет 3-4% при исходном содержании около 60 г/м3 (3 об.%). На второй стадии насыщенный сероводородом абсорбент подвергают вакуумной обработке при разрежении 595-645 мм рт. ст. и температуре 60-84°С. В процессе этой обработки поглощенный сероводород на 98% переходит в газовую фазу. В нее переходят также сопутствующие H2S компоненты. В результате газовая фаза имеет состав, об.%: H2S 83,5-86; СО2 10,3-10,8; HCN 1,55-2,56; воздух 1,65-3,60. На третьей стадии получаемый богатый сероводородный газ перерабатывают на серную кислоту или элементарную серу известными методами.

Недостатками прототипа являются:

– низкая степень очистки газов от сероводорода;

– многостадийность технологического процесса.

В основу изобретения поставлены технические задачи повышения степени очистки газов от сероводорода и упрощения технологической и аппаратурной схем очистки.

Для решения поставленных задач в известном способе очистки технологических газов от сероводорода, включающем противоточный контакт газов с жидким основным поглотителем, абсорбцию сероводорода поглотителем, отделение сероводорода от сопутствующего диоксида углерода и перевод сероводорода в утилизируемые продукты, согласно изобретению в качестве поглотителя используют водные растворы или суспензии гидроксидов или оксидов щелочных или щелочноземельных металлов, а сероводород отделяют от диоксида углерода на стадии контакта газов с поглотителем, извлекая ими лишь сероводород, за счет проведения контакта в вихревых камерах с вращающимся газожидкостным слоем при продолжительности пребывания газов в слое от 0,001 до 0,1 сек.

Поставленная техническая задача повышения степени очистки газов от сероводорода решается благодаря переходу к более активным поглотителям и снижению времени пребывания газов в зоне контакта до величины, недостаточной для перехода диоксида углерода из газовой фазы в жидкую, но превышающей время поглощения сероводорода, что достигается интенсификацией контакта газов с поглотителями, а именно проведением контакта в вихревых камерах с вращающимся газожидкостным слоем.

По прототипу для очистки газов от сероводорода в качестве поглотителей используют водные растворы Na2CO3. В процессе очистки H2S переходит в поглотители по реакции:

Реакция является обратимой и при постоянной концентрации Na23 смещается влево по мере накопления в поглотителе NaHCO3 и NaHS. Это препятствует глубокой очистке газов от сероводорода. Степень очистки может быть увеличена путем увеличения концентрации Nа2СО3 в поглотителе, однако при этом снижается степень отгонки H2S из поглотителя на стадии его регенерации. С учетом этих обстоятельств в прототипе выбрана компромиссная концентрация Na2CO3 (0,5 мол/дм3), при которой глубокая очистка газов от сероводорода не может быть достигнута.

По изобретению очистка протекает по реакциям типа:

Эти реакции смещены вправо в гораздо большей степени, чем реакция (1), поскольку необходимые для образования H2S протоны в воде удерживаются гидроксилионами более прочно, чем протоны в NaHCO3 карбонат-ионами (рК2 Н2СО3=10,24; рК Н2О14 (И.М.Кольтгоф, В.А.Стенгер. Объемный анализ, т.1. Госхимиздат, 1950, с.23, 307). В результате при использовании поглотителей на основе гидроксидов (оксидов) щелочных или щелочноземельных металлов в сравнимых условиях достигают более полной очистки газов от сероводорода и более полного насыщения поглотителей сероводородом, чем в случае содовых поглотителей.

Однако использование для очистки газов от сероводорода упомянутых поглотителей в условиях по прототипу – продолжительность пребывания газов в зоне контакта (конт) не менее 3 секунд – практически невозможно из-за мешающего влияния диоксида углерода. Содержание СО2 в подлежащих очистке газах обычно находится на уровне не ниже 3 об.%, что выше содержания H2S (0,1-1 об.%). В этих условиях СO2 интенсивно улавливается гидроксидными (оксидными) поглотителями, что резко ухудшает показатели очистки газов от сероводорода, снижая степень очистки, уровень насыщения поглотителей сероводородом и увеличивая расход гидроксидов (оксидов).

Мешающее влияние СО2 по изобретению устраняют, проводя контакт очищаемых газов с поглотителями при величине конт, меньшей времени установления равновесий гидратации СО2 (гидр):

В чистой воде величина гидр составляет 20-60 с (М.С.Литвиненко. Очистка коксового газа от сероводорода. Вакуум-карбонатный метод. Харьков. Металлургиздат, 1959, с.108). В присутствии основных соединений, в частности гидроксидов (оксидов) щелочных и щелочноземельных металлов, протекает реакция связывания (нейтрализации) протонов реакций (6), (7) гидроксидами (оксидами) в воду, что приводит к сдвигу равновесий вправо. Степень сдвига возрастает с ростом основности гидроксидов (оксидов). По изобретению величина конт не превышает 0,1 с. В соответствии с результатами, описанными в примерах, это практически исключает переход СО2 из газовой фазы в жидкую.

Уменьшение величины конт в сравнимых условиях должно приводить к снижению степени извлечения сероводорода. Это снижение по изобретению компенсируется интенсификацией контакта газов с поглотителями, а именно проведением контакта в вихревых камерах с вращающимся газожидкостным слоем (Патент РФ №2084269, В 01 D 47/06, 1993). Такой слой характеризуется большой удельной межфазной поверхностью, обусловленной высокой дисперсностью и плотным расположением капель жидкости, высокой скоростью обновления поверхности контакта, связанной с каскадным процессом дробления/слияния капель, и однородностью микроструктуры, связанной с цикличностью движения слоя. Все это вместе определяет высокую эффективность контакта газа и жидкости, в частности, высокую скорость массопередачи. Для низкомолекулярных газов типа сероводорода значения объемного коэффициента массопередачи в газовой фазе составляют 103-104 1/с. Это означает, что характерное время захвата молекул сероводорода из газа межфазной поверхностью не превышает 10-4-10-3 с. В отличие от диоксида углерода, поглощение которого лимитируется реакциями гидратации (4)-(7), для сероводорода все реакции на межфазной границе и в жидкой фазе для выбранных по изобретению поглотителей являются быстрыми. Описанные ниже примеры показывают, что продолжительность контакта порядка 10-3 c является достаточной для процесса поглощения сероводорода в целом. Таким образом при проведении контакта газов, содержащих H2S и СО2, с растворами гидроксидов (оксидов) щелочных и щелочноземельных металлов во вращающемся газожидкостном слое существует интервал времен контакта 10-3-10-1 с, в котором обеспечивается селективное извлечение лишь сероводорода.

Решение технической задачи упрощения технологической и аппаратурной схем очистки газов от сероводорода по изобретению достигается путем снижения массогабаритных характеристик абсорберов (за счет снижения времени контакта) и ликвидации стадий вакуумной отгонки сероводорода из насыщенного поглотителя и переработки обогащенного при вакуумной отгонке газа на серную кислоту или элементарную серу. В результате вместо трех стадий процесса очистки газов от H2S и перевода его в утилизируемую форму согласно изобретению остается лишь одна стадия – извлечение сероводорода из газов поглотителями с одновременным их насыщением.

Образующиеся по предлагаемому способу конечные продукты – растворы бисульфидов щелочных (щелочноземельных) металлов – могут быть использованы в качестве сульфидизаторов в гидрометаллургических процессах, в частности, при флотационном обогащении руд, а также в других традиционных областях применения (производство искусственного волокна, кожевенная промышленность и др.).

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Три вихревых камеры (ВК) с вращающимся газожидкостным слоем производительностью по 5 м3 газа в минуту с продолжительностью пребывания газа в зоне контакта каждой вихревой камеры (вращающемся слое ВС) 0,1 секунды соединяют последовательно в соответствии со схемой. Схема предусматривает последовательное противоточное пропускание подлежащего очистке газа через ВК 1-2-3 и поглотителя через ВК 3-2-1. Кроме противотока в схеме реализуют рециркуляцию поглотителя через каждую ВК с помощью промежуточных баков Б1-3. Постоянный по времени и одинаковый для всех ступеней контакта проток поглотителя обеспечивают поддержанием постоянного уровня жидкости в Б1-3. В соответствии со схемой на выходе из ВК3 получают очищенный от H2S газ, который сбрасывают в атмосферу. В бак Б3 подают свежий поглотитель, на выходе из Б1 получают насыщенный сероводородом поглотитель.

Для очистки используют искусственную газовую смесь, содержащую, об.%: Н2S – 0,2; СО2 – 3; воздух – остальное. Смесь готовят дозированной подачей Н2S и СO2 из отдельных баллонов в поток воздуха, поступающий в ВК1. В качестве поглотителя используют водную суспензию гидроксида кальция Са(ОН)2 с исходным содержанием 3 мол/дм3. В каждый из баков Б1-3 заливают по 8 дм3 поглотителя, подают в Б3 0,075 дм3/мин (0,015 дм3 на 1 м3 газа) свежей суспензии и организуют рециркуляцию через каждую из ВК с расходом 25 дм3/мин (5 дм3 на 1 м3 газа).

Очистку проводят с непрерывным йодометрическим контролем содержания H2S в газовой смеси на выходе из ВК3. Процесс продолжают до стабилизации состава поглотителя в Б1-3. Систему останавливают, йодометрически определяют содержание H2S в жидкой части содержимого бака Б1 и комплексометрически – содержание кальция в ней.

Согласно полученным результатам газ после очистки на выходе из ВКЗ содержал не более 0,0015 мол/м3 H2S (не более 50 мг/м3), степень очистки составила более 98%. Содержание H2S в Б1 (на выходе из абсорбера) равнялось 5,85 мол/дм3, а кальция – 2,90 мол/дм3. Это означает, что H2S поглощается в форме кислой соли Ca(HS)2, a Са(ОН)2 насыщен только этой солью, конкурентный переход в поглотитель СО2 в виде СаСО3 практически не имеет места.

Пример 2.

То же, что в примере 1, но продолжительность пребывания газовой смеси в зоне контакта каждой из вихревых камер равна 0,002 секунды. Полученные результаты по составу поглотителя на выходе аналогичны приведенным в примере 1. Степень очистки от сероводорода составляет около 97%.

Пример 3.

То же, что в примере 2, но число ступеней контакта равно пяти, а расход поглотителя в каждом из контуров рециркуляции – 0,5 дм3 на 1 м3 газа. Полученные результаты аналогичны приведенным в примере 2.

Пример 4.

То же, что в примере 3, но продолжительность пребывания газовой смеси в зоне контакта каждой из вихревых камер равна 0,001 секунды. Состав поглотителя на выходе аналогичен приведенному в примерах 1-3. Степень очистки от сероводорода – приблизительно 95%.

Пример 5.

То же, что в примере 4, но в качестве поглотителя используют 6 мол водный раствор NaOH. Полученные результаты аналогичны приведенным в примере 4.

Как видно из приведенных примеров, предлагаемый способ позволяет повысить степень очистки газов от сероводорода и упростить схему очистки и может найти широкое применение для очистки от сероводорода СО2-содержащих технологических газов, в частности, отходящих газов производств, осуществляющих термическую обработку в восстановительной среде серусодержащих горючих полезных ископаемых (коксование и газификация углей и др.)

Формула изобретения

Способ очистки технологических газов от сероводорода, включающий противоточный контакт газов с жидким основным поглотителем, абсорбцию сероводорода поглотителем, отделение сероводорода от сопутствующего диоксида углерода и перевод сероводорода в утилизируемые продукты, отличающийся тем, что в качестве поглотителя используют водные растворы или суспензии гидроксидов или оксидов щелочных или щелочноземельных металлов, а сероводород отделяют от диоксида углерода на стадии контакта газов с поглотителем, извлекая им лишь сероводород, за счет проведения контакта в вихревых камерах с вращающимся газожидкостным слоем при продолжительности пребывания газов в слое от 0,001 до 0,1 с.

РИСУНКИ


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 11.10.2005

Извещение опубликовано: 27.12.2006 БИ: 36/2006


Categories: BD_2245000-2245999