Патент на изобретение №2245863

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2245863 (13) C1
(51) МПК 7
C04B35/035, C04B35/043, C04B35/64
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.01.2011 – действует

(21), (22) Заявка: 2004104395/03, 17.02.2004

(24) Дата начала отсчета срока действия патента:

17.02.2004

(45) Опубликовано: 10.02.2005

(56) Список документов, цитированных в отчете о
поиске:
US 5438026 A 01.08.1995. RU 2151123 C1 20.06.2000. RU 2171243 С1 27.07.2001. RU 2152915 С1 20.07.2000. WO 86/05481 A1 25.09.1986.

Адрес для переписки:

197136, Санкт-Петербург, а/я 73, пат.пов. Г.П.Мус, рег.N83

(72) Автор(ы):

Суворов С.А. (RU),
Коптелов В.Н. (RU),
Шатилов О.Ф. (RU),
Одегов С.Ю. (RU),
Плюхин П.В. (RU)

(73) Патентообладатель(и):

Суворов Станислав Алексеевич (RU)

(54) СОСТАВ И СПОСОБ ОБРАЗОВАНИЯ МАССЫ КАРБОНИРОВАННЫХ ОГНЕУПОРОВ

(57) Реферат:

Изобретение относится к технологии огнеупорных материалов, более конкретно к производству карбонированных огнеупоров, используемых в футеровках металлургических агрегатов. Состав массы карбонированных огнеупоров содержит, мас.%: алюмомагнезиальный зернистый наполнитель 19,0-26,0, тонкомолотый комплексный заполнитель 15,0-35,0, пластификатор 0,9-1,6, углеродсодержащая смола 2,9-3,8, остальное – зернистый периклазовый наполнитель. При этом комплексный тонкомолотый заполнитель представлен смесью, мас.%: периклаз 50,0-81,0; графит 11,0-27,0; корунд 3,0-9,0; диоксид циркония 2,0 – 6,0; Al металлический 3,0-8,0. Способ образования массы карбонированных огнеупоров включает следующие операции: введение в поток зернистого периклазового наполнителя алюмомагнезиального зернистого наполнителя, добавление пластификатор, капсулирование поверхности зерен, и последующее введение комплексного тонкомолотого заполнителя, углеродсодержащей смолы, смешивание до образования карбонированной массы с насыпной плотностью 1,65-2,0 г/см3. Полученную массу выгружают из смесителя и подвергают вылеживанию не менее 3 часов, после чего формуют изделия и термообрабатывают при температуре выше 150°С.2 н. и 1 з.п.ф-лы, 1 табл.

Изобретение относится к технологии огнеупорных материалов, а именно производству карбонированных огнеупоров, используемых в футеровках металлургических агрегатов, подвергающихся при эксплуатации воздействию интенсивных химических, термических, механических нагружений.

Имеющиеся литературные и патентные источники информации по составам масс и способам получения карбонированных огнеупоров свидетельствуют, что повышение физико-технических и потребительских свойств осуществляется за счет совершенствования фазового состава карбонированных огнеупоров, введением в состав шихты добавок (Патент США №116782, С 04 В 035/52, 1981; Патент США №667483, С 04 В 035/52, 1993), применения альтернативных фенолформальдегидной смоле и пеку типов связующих (Патент США №254980, С 08 К 005/06, С 08 К 003/04, 1983; Патент США №271657, С 04 В 035/00, 1991), путем совместного введения углеродсодержащего ингредиента с добавкой промотора в виде гранул (Патент РФ №2151123 С 04 В 35/035, 35/103, 2000) или путем сопряжения углеродсодержащего ингредиента с антиокислительной добавкой, фенольным связующим, композиционным углеродистым пластификатором, в виде пластифицирующихся гранул (Патент РФ №2171243, С1, 2000). Предложены технические решения повышения термомеханических характеристик и стойкости к окислению путем формирования более плотного и менее дефектного кокса связующей углеродной матрицы за счет применения комбинированных связующих на основе пека, смолы и сажы. (Патент США №490816, С 04 В 035/52, 1985; Патент США №638954, В 28 В 007/34, C 08 L 005/00, 1993; Патент США №428965, С 04 В 035/54, 1991). Принимаемые меры направлены на уменьшение окисления углеродистого компонента и деградации микроструктуры карбанированного огнеупора удорожают огнеупорную продукцию, но как показывает практика промышленного применения таких огнеупоров, это не всегда сопровождается необходимым

увеличением сроков эксплуатации футеровок металлургических агрегатов. Т.о. известные решения не достаточны для формирования в огнеупоре низкопористой микроструктуры с пониженной теплопроводностью, что имеет ведущее влияние на снижение разрушения огнеупоров в процессе эксплуатации, для уменьшения глубины проникновения расплава стали и шлака в объем огнеупора, повышения теплового сопротивления огнеупорной кладки футеровки агрегата.

Ближайшим к заявленному составу и способу образования массы карбонированных огнеупоров является состав и способ образования массы карбонированных огнеупоров с повышенной устойчивостью к термическим напряжениям (Патент США 5438026, С 04 B 35/52, 1994). Для достижения этой цели периклазоуглеродистую массу приготавливают из зернистого периклазового наполнителя, графита, смеси совместного помола магниево-алюминиевого сплава с тонкомолотым периклазом и углеродистой органической связки.

Такое техническое решение при высокой плотности изделий не обеспечивает низкой теплопроводности менее 8-9 Вт/м-К, не сдерживает проникновение расплава стали и шлака в объем огнеупора, требует выпуска из сталеплавильного агрегата в ковш предварительно перегретого на 60-90°С расплава стали из-за низкого теплового сопротивления карбонированого огнеупора, что приводит к повышенной скорости износа футеровки более 2.5 мм/плавку и сокращению ресурса эксплуатации футеровки сталеразливочного ковша.

Задачей изобретения является разработка состава и способа образования массы карбонированных огнеупоров с высокими эксплуатационными характеристиками.

Технический результат состоит в том, что полученный карбонированный огнеупор обладает плотной, мелкопористой микроструктурой, высоким сопротивлением проникновению расплава и шлака в объем карбонированного огнеупора, с пониженной теплопроводностью и скоростью разрушения в футеровке рабочего слоя днища сталеразливочного ковша.

В состав массы огнеупоров входят следующие ингредиенты, мас.%: зернистый алюмомагнезиальный наполнитель -19,0-26,0%, тонкомолотый комплексный заполнитель -15,0-35,0%, пластификатор 0,9-1,6%, углеродсодержащая смола 2,9-3,8%, зернистый периклазовый наполнитель – остальное, при этом тонкомолотый комплексный заполнитель представлен смесью, состоящий из (мас.%) периклаза 50,0-81,0%, графита 11,0-27,0%, корунда 3,0-9,0%, диоксида циркония 2,0-6,0%, металлического Аl 3,0-8,0%.

Технический результат достигается функциональной организацией стохастической текстуры массы путем направленного распределения наполнителей зернистого периклаза и зернистого алюмомагнезиального материала, тонкомолотого комплексного заполнителя, графита, пластификатора, углеродсодержащей смолы.

Сущность и реализация способа состоит в том, что в смеситель в поток зернистого периклазового наполнителя вводят зернистый алюмомагнезиальный наполнитель 19,0-26,0 мас.%, добавляют пластификатор 0,9-1,6 мас.%, капсулируют поверхность зерен, вводят комплексный тонкомолотый заполнитель 15,0-35,0 мас.%, перемешивают, добавляют 2,9-3,8 мас.% углеродсодержащей смолы, продолжают смешивание до образования карбонированной массы с насыпной плотностью 1,65-2,0 г/см3, выгружают из смесителя и подвергают вылеживанию не менее 3 часов для эвакуации газовых выделений продуктов реакций, после чего формуют изделия при усилии более 100 МПа, термообрабатывают при температуре выше 150°С.

Заявляемый способ обеспечивает функциональную организацию текстуры массы и мелкопористой плотной микроструктуры карбонированного огнеупора за счет направленного распределения ингредиентов, позволяет более полно использовать свойства промотора металлического алюминия и модифицирующих добавок ZrО2, Al2О3 за счет управляемого распределения их между огнеупорным зернистым наполнителем полифракционного состава. Подбор зернового и минерального состава компонентов огнеупорной матрицы позволяет получать структуру огнеупора с высокими эксплуатационными характеристиками: высокой сопротивляемостью к воздействию расплавов стали, шлака, низкой теплопроводностью. Кроме того, заявляемый способ обеспечивает уменьшение вовлечения в массу карбонированных огнеупоров воздуха, высокую плотность изделий после прессования и обжига, регулирует направленность химических реакций при эксплуатации огнеупора.

Карбонированные огнеупорные изделия из образованной таким образом карбонированной массы обладают исключительно высокими антиокислительными, термомеханическими и теплоизолирующими свойствами.

В предлагаемом техническом решении использовались плавленый периклаз (содержание МgО не менее 97 мас.%), алюмомагнезиальный материал (содержание МgО 37-39 мас.%, Аl2Оз 58-62 мас.%), графит марки +198, нормальный электрокорунд по ГОСТ 28818-90, диоксид циркония по ГОСТ 21907-76, алюминий порошкообразный марки АСД по ГОСТ 51667-97, смола фенольная порошкообразная марки 0125М по ТУ 2257-241-00203447-97, этиленгликоль по ГОСТ 19710-83 и их аналоги: спеченный периклаз отечественного производства (содержание МgО не менее 96%), спеченный периклаз импортного производства марки Premier LC (содержание МgО не менее 96%), шпинельные порошки марок MR66, MR78, MR90, графит марок ГТ-1 по ГОСТ 4596-75, марки -198, порошки корундовые по ТУ 14-8-531-87, ТУ 14-8-384-81, глинозем марки ГОО по ГОСТ 30558-98, алюминий марки АПВ-П по ТУ 1791-114-0019491-95, смола фенольная марок СТ 2163 по ТУ 2257-004-05761778-2002, СФП-012К по ТУ 2257-074-05015227-2002. Предлагаемое техническое решение обладает новизной, техническим уровнем и промышленно применимо, позволяет получать изделия с показателями свойств, превосходящими прототип.

Ниже приводятся примеры реализации состава и способа образования массы карбонированных огнеупоров.

Пример 1

В работающий смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 60,3 мас.%, состоящего из 45 мас.% плавленого периклаза, 20% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 0,9 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до капсулирования поверхности зерен за счет образования на поверхности органической пленки, вводят 35 мас.% комплексного тонкомолотого наполнителя, который представлен: 54,0 мас.% плавленого периклаза (содержание МgО не менее 97 мас.%), 25,7 мас.% графита марки +198, 8,9 маc.% электрокорунда марки 25А по ГОСТ 28818-90, 5,4 мас.% диоксида циркония марки ЦРО-1 пo ГОСТ 21907-76, 6,0 мас.% алюминия порошкообразного марки АСД-1 8,0 маc.% по ГОСТ 51667-97, перемешивают, вводят 3,8 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,65 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия при усилии 200 МПа. Свойства полученного таким образом изделия приведены в таблице.

Пример 2

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 70,2 мас.%, состоящего из 50 мас.% плавленого периклаза, 25 мас.% плавленого алюмомагнезального материала фракции 3-1 мм, вводят 1,6 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут капсулирование путем смешения до образования на поверхности зерен органической пленки, вводят 25 мас.% комплексного тонкомолотого наполнителя, который представлен: 65,1 мас.% плавленого периклаза, 19.1 мас.% графита марки +198, 6,3 маc.% электрокорунда марки 25А по ГОСТ 28818-90, 3,8 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 5,7 маc.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 3,2 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,65 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия. Свойства полученного таким образом изделия приведены в таблице.

Пример 3

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 65,5 мас.%, состоящего из 45 мас.% плавленого периклаза, 25 мас.% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 1,5 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до образования на поверхности зерен органической пленки, вводят 30 мас.% комплексного тонкомолотого заполнителя, который представлен: 58,1 мас.% плавленого периклаза, 22,9 мас.% графита марки +198, 7,6 маc.% электрокорунда марки 25 А по ГОСТ 28818-90, 4,6 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 6,8 мас.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 3,0 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,76 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после формуют изделия. Свойства полученного таким образом изделия приведены в таблице.

Пример 4

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 67,2 мас.%, состоящего из 50 мас.% плавленого периклаза, 22 мас.% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 1,3 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до образования на поверхности зерен органической пленки, вводят 28 мас.% комплексного тонкомолотого заполнителя, который представлен: 60,8 мас.% плавленого периклаза, 21,4 мас.% графита марки +198, 7,1 маc.% электрокорунда марки 25А по ГОСТ 28818-90, 4,3 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 6,4 мас.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 3,5 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,82 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия. Свойства полученного таким образом изделия приведены в таблице.

Пример 5

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 67,4 мас.%, состоящего из 59 мас.% плавленого периклаза, 13 мас.% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 1,4 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до образования на поверхности зерен органической пленки, вводят 28 мас.% комплексного тонкомолотого заполнителя, который представлен: 60,8 мас.% плавленого периклаза, 21,4 мас.% графита марки +198, 7,1 маc.% электрокорунда марки 25А по ГОСТ 28818-90, 4,3 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 6,4 мас.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 3,2 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,80 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия. Свойства полученного таким образом изделия приведены в таблице.

Пример 6

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 73,9 мас.%, состоящего из 59 мас.% плавленого периклаза, 20% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 1,1% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до образования на поверхности зерен органической пленки, вводят 21 мас.% комплексного тонкомолотого заполнителя, который представлен: 70,6 мас.% плавленого периклаза, 16,1 мас.% графита марки +198, 5,3 мас.% электрокорунда марки 25А по ГОСТ 28818-90, 3,2 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 4,8 мас.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 4,0 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,68 т/м3, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия. Свойства полученного таким бразом изделия приведены в таблице.

Разработанные огнеупорные изделия под маркой ПШУП-1 прошли промышленные испытания в сталеразливочных ковшах. Износ в днище не превышал 2,0 мм/плавку, что в 2-3 раза меньше по сравнению с известными применяемыми огнеупорами.

Таблица 1
Термомеханические и эксплуатационные характеристики изделий
Пористость открытая, % Плотность (кажущаяся) г/см3 Прочность при сжатии, Н/мм2 Теплопроводность, Вт/м-К 800° Износ, % относительно прототипа
Пример 1 5,8 2.98 49.3 4.79 54.7
Пример 2 4,3 3.05 58.3 4.85 43.8
Пример 3 4,9 3.01 53.1 5.21 50.7
Пример 4 4,1 3.07 61.7 4.92 40.7
Пример 5 4,5 3.02 55.6 5.63 45.3
Пример 6 5,9 2.98 50.3 6.05 58.3
Прототип 6,1 2.95 48.5 11.5 100

Формула изобретения

1. Состав массы карбонированных огнеупоров, включающий зернистый наполнитель, графит, тонкомолотый заполнитель, пластификатор, углеродсодержащую смолу, отличающийся тем, что вещественный состав представлен, мас.%:

Алюмомагнезиальный зернистый наполнитель 19,0-26,0

Тонкомолотый комплексный заполнитель 15,0-35,0

Пластификатор 0,9-1,6

Углеродсодержащая смола 2,9-3,8

Зернистый периклазовый наполнитель Остальное

причем комплексный тонкомолотый заполнитель представлен смесью, мас.%:

Периклаз 50,0-81,0

Графит 11,0-27,0

Корунд 3,0-9,0

Диоксид циркония 2,0-6,0

Al металлический 3,0-8,0

2. Способ образования массы карбонированных огнеупоров, включающий смешивание зернистого наполнителя, графита, комплексного тонкомолотого заполнителя, пластификатора, углеродсодержащей смолы, отличающийся тем, что в поток зернистого периклазового наполнителя вводят алюмомагнезиальный зернистый наполнитель – 19,0-26,0 мас.%, добавляют пластификатор – 0,9-1,6 мас.%, капсулируют поверхность зерен, вводят комплексный тонкомолотый заполнитель – 15,0-35,0 мас.%, перемешивают, добавляют 2,9-3,8 мас.% углеродсодержащей смолы, продолжают смешивание до образования карбонированной массы с насыпной плотностью 1,65-2,0 г/см3, выгружают из смесителя и подвергают вылеживанию не менее 3 ч для эвакуации газовых включений, продуктов реакций, после чего формуют изделия при усилии более 100 МПа, термообрабатывают при температуре выше 150°С.

3. Способ по п.2 отличающийся тем, что получают химический состав массы карбонированного огнеупора, мас.%: МgО – 65,0-82,0%, Al2O3 – 14,0-22,0%, С – 3,0-9,0%, сумма SiO2, СаО, Fе2O3 – не более 1,0-4,0%, при отношении СаО/SiO2>1,7.


PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение

(73) Патентообладатель(и):

Суворов Станислав Алексеевич

(73) Патентообладатель:

ОАО по производству огнеупоров “Комбинат “Магнезит”

Дата и номер государственной регистрации перехода исключительного права: 29.11.2005 № РД0004487

Извещение опубликовано: 20.01.2006 БИ: 02/2006


Categories: BD_2245000-2245999