Патент на изобретение №2244286

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2244286 (13) C1
(51) МПК 7
G01N11/08
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.01.2011 – прекратил действие

(21), (22) Заявка: 2003132600/28, 06.11.2003

(24) Дата начала отсчета срока действия патента:

06.11.2003

(45) Опубликовано: 10.01.2005

(56) Список документов, цитированных в отчете о
поиске:
SU 520537 A1, 05.07.1976. SU 987469 A1, 07.01.1983. SU 371478 A1, 01.01.1973. SU 1497500 A1, 30.07.1989;
US 6386016 B1, 14.05.2002.

Адрес для переписки:

426069, г.Ижевск, ул. Студенческая, 7, ИжГТУ

(72) Автор(ы):

Покрас И.Б. (RU),
Шелковникова Ю.Н. (RU)

(73) Патентообладатель(и):

Ижевский государственный технический университет (RU)

(54) СПОСОБ ОПРЕДЕЛЕНИЯ РЕОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ВЯЗКОПЛАСТИЧЕСКИХ ЖИДКОСТЕЙ

(57) Реферат:

Использование: для исследования или автоматического контроля и регулирования свойств вязкопластических жидкостей. Сущность: способ включает прокачку жидкости через два одинаковых капилляра, выполненных в виде кольцевых каналов разной длины, определение ее объемного расхода, перепада давлений на концах капилляров, а затем вязкости и предела текучести.

Технический результат – повышение точности измерений и упрощение определения вязкости и текучести. 2 ил.

Изобретение относится к области научного приборостроения, а именно к способам определения реологических характеристик неньютоновских жидкостей, в частности вязкости и предела текучести вязко-пластических жидкостей (например, смазочных материалов). Оно может применяться при исследовании или автоматическом контроле и регулировании свойств таких жидкостей.

Известен способ определения предела текучести вязкопластических материалов [1], заключающийся в двухступенчатом деформировании сжатием образца между двумя параллельными дисками путем нагружения усилием, величина которого на второй ступени превышает величину его нагружения на первой ступени, и измерении толщины образца на первой ступени нагружения в момент начала нагружения второй ступенью, а на второй ступени нагружения – в момент прекращения вязкопластического течения.

Недостатком этого способа являются низкая точность измерений предела текучести вязкопластических материалов и невозможность измерения их вязкости.

Известен также способ измерения вязкости неньютоновских жидкостей [2], заключающийся в прокачке жидкости через капилляр и определении напряжения и скорости сдвига на стенке канала.

Его недостатком является то, что этим способом нельзя найти предел текучести вязкопластических жидкостей.

Наиболее близким, принятым за прототип, является способ определения реологических характеристик вязкопластических сред [3], включающий прокачивание исследуемой среды через три различные последовательно соединенные системы капилляров (каждая из которых содержит две параллельные одинаковые пары последовательно соединенных капилляров разной длины и одинакового внутреннего диаметра; радиус капилляров первой системы больше радиуса капилляров второй на величину одной четвертой степени отношения разностей длин длинного и короткого капилляров этих систем, а радиус капилляров третьей системы больше радиуса капилляров второй системы на величину первой степени отношения разности длин длинного и котороткого капилляров третьей и второй систем) и измерения перепадов давления в межкапиллярных камерах, при этом вязкость и предел текучести определяются по показаниям вторичных приборов, регистрирующих разности перепадов давления и проградуированных в единицах соответственно вязкости и предела текучести.

Недостатками известного способа являются его сложность и низкая точность определения искомых реологических свойств. Сложность способа заключается в громоздкости конструкции (большое количество капилляров, камер, дифференциальных манометров), а также в сложности изготовления капилляров строго определенных диаметров (радиус капилляров первой системы больше радиуса капилляра второй системы на величину одной четвертой степени отношения разности длин длинного и короткого капилляров этих систем, а радиус капилляров третьей системы больше радиуса капилляров второй системы на величину первой степени отношения разности длин длинного и короткого капилляров этих систем). Низкая точность определения реологических свойств связана с потерей давления на трение (которая является существенной при значительной суммарной длине капилляров и межкапиллярных камер), с большим количеством измерительных приборов (каждый из которых вносит погрешность в окончательное определение искомых свойств жидкостей), а также с погрешностью изготовления капилляров строго определенного диаметра.

Предложен способ определения реологических характеристик вязкопластических жидкостей, включающий прокачку жидкости через капилляры, определение ее объемного расхода, перепада давлений на концах капилляров, вязкости и предела текучести, отличающийся тем, что жидкость пропускают через два одинаковых капилляра, выполненных в виде кольцевых каналов разной длины, а вязкость и предел текучести S определяют из выражений

где h=R-R1, R,R1 и l – соответственно внешний, внутренний радиусы и длина капилляра; p – перепад давлений на концах капилляра; Q – объемный расход жидкости; индексы 1 и 2 соответствуют первому и второму капиллярам, при этом вязкость и предел текучести определяют при помощи цифрового вычислителя со встроенным аналого-цифровым преобразователем (АЦП).

Предлагаемый способ позволяет повысить точность измерений и упростить определение вязкости и предела текучести вязкопластических жидкостей. К отличительным признакам предложенного способа следует отнести то, что оба капилляра выполнены в виде кольцевых каналов различной длины, а также применение цифрового вычислителя со встроенным АЦП для определения вязкости и предела текучести исследуемых жидкостей по предложенным формулам. Более высокая точность определения реологических характеристик связана с меньшей потерей давления на трение (которая является существенной в прототипе при значительной суммарной длине его капилляров и межкапиллярных камер), с меньшим количеством дифференциальных манометров (два в предложенном способе и пять – в прототипе, при этом каждый из манометров вносит погрешность в окончательное определение искомых свойств жидкости), с применением вместо аналоговых вторичных приборов (проградуированных в единицах соответственно предельного напряжения сдвига и структурной вязкости исследуемой среды) – цифрового вычислителя со встроенным АЦП для определения вязкости и предела текучести, а также с меньшей требуемой погрешностью изготовления капилляров (в прототипе необходимо изготавливать капилляры строго определенного диаметра).

Предложенный способ более прост по сравнению с прототипом, так как для его осуществления необходимо меньшее количество капилляров и межкапиллярных камер (при этом изготовление капилляров в предложенном способе более простое, чем в прототипе, так как не требуются капилляры различных, строго определенных диаметров), а предложенная цифровая регистрация реологических характеристик более удобна и проста в эксплуатации, чем аналоговая регистрация этих характеристик в прототипе.

На фиг.1 приведена схема устройства, реализующего предложенный способ определения реологических характеристик вязкопластических жидкостей; на фиг.2 – осевое сечение капилляра, иллюстрирующее течение этих жидкостей в кольцевом канале.

Предложенный способ осуществляется следующим образом. Исследуемую жидкость прокачивают через одинаковые капилляры 1, 2 кольцевого сечения и различной длины l1, l2, при этом дифференциальные манометры 3, 4 (с электрическими выходами) измеряют перепады давления на концах капилляров 1, 2, подсоединенных соответственно к выходным камерам 5, 6 и входным камерам 7, 8 с измерителями расхода жидкости, подключенными к баку 9 с исследуемой жидкостью. На основании этих измерений цифровой вычислитель 10 со встроенным АЦП (например, микропроцессор) по предложенным формулам вычисляет величины вязкости и предела текучести исследуемых жидкостей.

Течение вязкопластической жидкости в кольцевом канале иллюстрируется фиг.2, где R и R1 – соответственно, внешний и внутренний радиус капилляра; r – текущий радиус капилляра; h=R-R1. Скорость и напряжение сдвига определяются по формулам:

где – напряжение сдвига; градиент скорости в перпендикулярном ей направлении; – вязкость жидкости; p – перепад давлений на концах капилляра; у=r-R1; l – длина капилляра. Напряжение сдвига достигает предельно значения S, в координате у=h1:

откуда

Объемный расход жидкости определяется выражением:

Обозначим координату h1, для двух различных капилляров через h1 и h’’1. Тогда объемный расход жидкости для этих капилляров запишется следующим образом:

Из уравнения (6) выразим :

Подставим полученное выражение в уравнение (7):

Согласно (4) можно записать:

Подставим выражения (10)и(11)в уравнение (9):

Решая это уравнение относительно S (предела текучести), получаем три корня, два из которых комплексные. Единственный действительный корень имеет следующий вид:

Подставив (10), (11), (13) в (8), получим выражение для вязкости :

Запишем выражение для объемного расхода жидкости Q, подставив (4) в (5):

Аналогично, решая (15) относительно г,, выбираем действительный корень:

где в качестве р, l и Q можно использовать данные, полученные для любого из используемых капилляров.

Таким образом, предложенный способ обеспечивает одновременное точное определение по формулам (14) и (16) вязкости и предела текучести вязкопластических жидкостей при более простой по сравнению с прототипом конструкции установки для его реализации. Повышенная точность измерений и S, определяется более высокой точностью нахождения параметров уравнений (14) и (16) за счет более высокой точности изготовления меньшего числа более простых конструктивных элементов, в частности капилляров в виде кольцевого канала. Кроме того, градуировка вторичных приборов измерения вязкости и предела текучести жидкостей в прототипе, заменена предложенными более точными вычислениями на основе формул (14) и (16) с помощью цифрового вычислителя с встроенным АЦП.

Работоспособность предложенного способа проверена экспериментально на макете реализующего его устройства. Макет содержит цилиндрическое основание, в который вставлен стержень и плунжер с уплотнениями. Капилляр выполнен в виде кольцевого зазора между цилиндрическим корпусом и расположенным внутри него стержнем. Макет снабжен системой циркуляции жидкости, состоящей из обратного клапана, сливной и нагнетающей трубок, бака с исследуемой жидкостью.

Для проверки предложенного способа с одновременным использованием двух капилляров разной длины проводились последовательно на описанном макете два опыта, в каждом из которых использовался стержень одного диаметра и разной длины. На плунжер передавалось усилие, при котором он начинал сжимать исследуемую жидкость и прокачивать ее через капилляр. При проведении эксперимента, на концах капилляра измерялся перепад давлений, при котором происходила прокачка жидкости. Вязкость и предел текучести S исследуемых жидкостей вычислялись согласно выражений (14) и (16) с помощью калькулятора. Результаты испытаний показали высокую точность предложенного способа определения (погрешность их нахождения составила ~5%).

Применение предлагаемого способа обеспечивает возможность создания простых и одновременно прецизионных вискозиметров. Более высокая точность определения вязкости и предела текучести вязкопластических жидкостей, в частности смазок, дает возможность более точно назначать технологические режимы прессования, зависящие от и S повысить качество изготовления изделий, снизить износ пресс-форм и расход пресс-материалов.

Источники информации

1. А.с. 1141308, G 01 N 11/00. Способ определения предела текучести вязкопластичных материалов. В.П.Ставров, В.П.Сергиенко.

2. А.с. 1716388, G 01 N 11/04. Способ измерения вязкости неньютоновских жидкостей. Ю.В.Капырин, А.М.Полищук, В.В.Балакин и др.

3. А.с. 520537, G 01 N 11/08. Способ определения реологических характеристик вязкопластичных сред. Е.П.Пистун, В.А.Коновал (прототип).

Формула изобретения

Способ определения реологических характеристик вязкопластических жидкостей, включающий прокачку жидкости через капилляры, определение ее объемного расхода, перепада давлений на концах капилляров, вязкости и предела текучести, отличающийся тем, что жидкость пропускают через два одинаковых капилляра, выполненных в виде кольцевых каналов разной длины, а вязкость и предел текучести S определяют из выражений

где h=R-R1;

R, R1 и l – соответственно внешний, внутренний радиусы и длина капилляра;

p – перепад давлений на концах капилляра;

Q – объемный расход жидкости;

индексы 1 и 2 соответствуют первому и второму капиллярам,

при этом вязкость и предел текучести определяют при помощи цифрового вычислителя со встроенным аналого-цифровым преобразователем.

РИСУНКИ


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 07.11.2005

Извещение опубликовано: 10.12.2006 БИ: 34/2006


Categories: BD_2244000-2244999