|
(21), (22) Заявка: 2002135555/28, 26.12.2002
(24) Дата начала отсчета срока действия патента:
26.12.2002
(43) Дата публикации заявки: 20.06.2004
(45) Опубликовано: 20.12.2004
(56) Список документов, цитированных в отчете о поиске:
РОМАНОВ В.Г. Проверка влагомеров твердых веществ. – М.: Издательство стандартов, 1983, с.108. SU 766267 А1, 28.01.1991. SU 1083765 A1, 23.12.1989. US 5412217 A, 27.05.1992. US 4515749 А, 07.05.1985. US 4884288 A, 28.11.1989.
Адрес для переписки:
630110, г.Новосибирск, ул. Б. Хмельницкого, 94, ОАО “Новосибирский завод химконцентратов”, патентно-информационный отдел
|
(72) Автор(ы):
Коротков Б.Р. (RU), Горбуль Б.Н. (RU), Чащин С.Б. (RU), Перфилов В.Б. (RU), Евсеев А.Г. (RU), Жуков Ю.А. (RU), Сайфутдинов С.Ю. (RU), Рожков В.В. (RU), Абиралов Н.К. (RU)
(73) Патентообладатель(и):
Открытое акционерное общество “Новосибирский завод химконцентратов” (RU)
|
(54) УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВЛАЖНОСТИ
(57) Реферат:
Использование: в атомной промышленности. Сущность: устройство содержит бункер накопитель, снабженный измерителями верхнего и нижнего уровней, выполненных в виде двух источников и двух детекторов ионизирующего излучения, соединенных с блоком накопления и обработки данных, источник и детектор нейтронов, блок многофункционального преобразования, блок накопления и обработки данных, соединенных последовательно, причем бункер накопитель выполнен со шнеком разгрузки, который через транспортный контейнер связан с электронными весами, а система управления состоит из электропривода шнека разгрузки и промышленного компьютера, который электрически соединен с блоком накопления и обработки данных и электронными весами. Технический результат – повышение ядерной безопасности и точности измерений. 1 ил.

Предлагаемое изобретение относится к атомной промышленности и предназначено для измерения влажности порошка диоксида урана с малым обогащением при его производстве.
Известен прибор и способ для измерения докритичности по патенту США №4.515 749, МПК G 21 С 017/00, 1985 г, содержащий два измерительных канала, один из которых регистрирует поток надтепловых нейтронов, как показатель массы контролируемого материала, второй канал регистрирует суммарный поток тепловых и надтепловых нейтронов, как показатель массы контролируемого материала и концентрации замедлителя (воды), и далее вычислительное устройство определяет степень докритичности по массовой влажности
Недостатком данного прибора является косвенное определение плотности контролируемого материала и, следовательно, высокая погрешность измерения.
Наиболее близким по технической сущности и достигаемому результату – прототип, является измеритель влажности “НИВА-2”, (см. В.Г.Романов. “Поверка влагомеров твердых веществ”. Издательство стандартов, М, 1983 г, стр.108), содержащий источник быстрых нейтронов и детектор медленных, сигнал которого пропорционален влажности вещества.
Данный измеритель определяет объемную влажность и имеет большую погрешность при измерении массовой влажности, а для обеспечения ядерной безопасности при производстве порошка диоксида урана необходимо знать процентное отношение массы воды к массе порошка (массовую влажность – мас.%).
Поскольку насыпная плотность порошка может меняться в пределах ±50%, погрешность измерения может составлять ±30%.
Кроме того, для определения кондиционности порошка необходимо измерять массовую влажность с относительной погрешностью не хуже ±10%.
Задачей изобретения является повышение ядерной безопасности и точности измерений.
Задача решается тем, что устройство для измерения влажности, содержащее бункер накопитель, снабженный измерителями верхнего и нижнего уровней, выполненных в виде двух источников и двух детекторов ионизирующего излучения, соединенных с блоком накопления и обработки данных, источник и детектор нейтронов, блок многофункционального преобразования, блок накопления и обработки данных, соединенных последовательно, согласно формулы изобретения, устройство снабжено электронными весами, транспортным контейнером, системой управления и бункер накопитель выполнен со шнеком разгрузки, который через транспортный контейнер связан с электронными весами, а система управления состоит из электропривода шнека разгрузки и промышленного компьютера, который электрически соединен с блоком накопления и обработки данных и электронными весами.
Указанная совокупность признаков является новой, неизвестна из уровня техники и позволяет решить поставленные задачи, так как массовая влажность Wm порошка определяется из прямого измерения объемной влажности Wv посредством нейтронного канала и прямого измерения массы m порошка в измеряемом объеме VБ бункера посредством электронных весов. При этом измеряемый объем VБ является постоянной величиной, расположен в диаметре бункера – накопителя и ограничен по высоте бункера измерителями верхнего и нижнего уровня, сигналы состояния которых через блок накопления и обработки данных передаются в промышленный компьютер, управляющий порционной разгрузкой порошка из бункера – накопителя, на электронные весы через шнек разгрузки и сменный транспортный контейнер. Промышленный компьютер получает результат измерения объемной влажности Wv для номинальной плотности рн от блока накопления и обработки данных и результат измерения массы m порошка от электронных весов и, с учетом транспортной задержки в объеме шнека, производит расчет массовой влажности по формуле: Wm=WvрнVБ/m.
Кроме того, по линиям связи между промышленным компьютером и блоком накопления и обработки информации в реальном времени производится постоянный контроль работоспособности нейтронного канала и системы управления, что увеличивает надежность в обеспечении ядерной безопасности производства.
Таким образом, реализация изобретения дает новый технический результат, заключающийся в прямом измерении массовой влажности порошка диоксида урана при постоянной самодиагностике работоспособности нейтронного измерительного канала и системы управления.
На чертеже представлена схема устройства для измерения влажности.
Устройство для измерения влажности состоит из бункера – накопителя 1, снабженного источниками 2 и детекторами 3 гамма-излучения измерителей верхнего и нижнего уровня, источником быстрых нейтронов 4 и блоком детектирования 5 нейтронного измерительного канала, блока многофункционального преобразования 6 нейтронного измерительного канала, блока накопления и обработки данных 7, выполненного на базе промышленного компьютера с блоками счетчиков и блоками ввода/вывода дискретных сигналов, электропривода 8 и промышленного компьютера 9 системы управления, шнека разгрузки 10, транспортного контейнера 11, электронных весов 12, безопасной емкости 13.
Устройство для измерения влажности работает следующим образом.
В процессе производства бункер – накопитель 1 заполняется порошком диоксида урана до момента срабатывания измерителя верхнего уровня, после чего блок накопления и обработки данных 7 начинает регистрацию скорости счета импульсов поступающих с блока детектирования 5 через блок преобразования многофункциональный 6 на вход счетчика импульсов блока 7. Скорость счета импульсов нейтронного измерительного канала пропорциональна объемной влажности Wv порошка загруженного в бункер – накопитель 1. Затем устройство накопления и обработки данных 7 по градуировочной характеристике определяет значение объемной влажности Wv и по линии вывода дискретных сигналов передает код объемной влажности на вход промышленного компьютера 9, Промышленный компьютер 9 считывает код объемной влажности и по линии ввода дискретных сигналов передает его значение на вход устройства накопления и обработки данных 7 для контроля работоспособности. Затем промышленный компьютер 9 считывает значение веса Р1 транспортного контейнера 11 с выхода электронных весов 12 и, через электропривод 8, включает вращение шнека разгрузки 10. Происходит разгрузка порошка в транспортный контейнер 11, установленный на электронных весах. В процессе разгрузки промышленный компьютер 9 запрашивает информацию о состоянии измерителя нижнего уровня по линии ввода дискретных сигналов от блока накопления и обработки данных 7 и, в момент срабатывания измерителя нижнего уровня, разгрузка прекращается. Затем промышленный компьютер 9 считывает значение веса P2 транспортного контейнера 11 с выхода электронных весов 12 и вычисляет массу загруженной в транспортный контейнер 11 порции порошка m=P2-P1. По значению массы т и объемной влажности Wv с учетом транспортной задержки промышленный компьютер 9 вычисляет значение массовой влажности загруженной порции порошка Wm=WvрнVБ/m и среднее значение массовой влажности порошка в транспортном контейнере. Далее цикл заполнения бункера – накопителя, измерения объемной влажности, разгрузки и вычисления массовой влажности повторяется.
Если значение объемной влажности Wv превышает порог ядерной безопасности, то промышленный компьютер 9 через электропривод 8 включает реверсивное направление вращения пшена 10 и производит разгрузку порошка в безопасную емкость 13.
В циклах приема и передачи информации производится постоянный взаимный контроль работоспособности нейтронного измерительного канала и промышленного компьютера по времени сеанса связи и коду на линиях ввода/вывода дискретных сигналов.
Формула изобретения
Устройство для измерения влажности, содержащее бункер накопитель, снабженный измерителями верхнего и нижнего уровней, выполненных в виде двух источников и двух детекторов ионизирующего излучения, соединенных с блоком накопления и обработки данных, источник и детектор нейтронов, блок многофункционального преобразования, блок накопления и обработки данных, соединенных последовательно, отличающееся тем, что устройство снабжено электронными весами, транспортным контейнером, системой управления и бункер накопитель выполнен со шнеком разгрузки, который через транспортный контейнер связан с электронными весами, а система управления состоит из электропривода шнека разгрузки и промышленного компьютера, который электрически соединен с блоком накопления и обработки данных и электронными весами.
РИСУНКИ
|
|