|
(21), (22) Заявка: 2002129084/15, 30.10.2002
(24) Дата начала отсчета срока действия патента:
30.10.2002
(43) Дата публикации заявки: 10.05.2004
(45) Опубликовано: 27.11.2004
(56) Список документов, цитированных в отчете о поиске:
US 5807532 A, 15.09.1998. RU 2000105770 A, 20.01.2002. CN 1360354 A, 24.07.2002. AU 2030101 A, 25.06.2001. EP 0814524 A, 29.12.1997.
Адрес для переписки:
636000, Томская обл., г. Северск, ФГУП Сибирский химический комбинат, НИКИ
|
(72) Автор(ы):
Дедов Н.В. (RU), Кондаков В.М. (RU), Кузнецов Ю.М. (RU), Кутявин Э.М. (RU), Любимова Л.Л. (RU), Макеев А.А. (RU), Малый Е.Н. (RU), Сенников Ю.Н. (RU), Соловьев А.И. (RU), Степанов И.А. (RU)
(73) Патентообладатель(и):
Федеральное государственное унитарное предприятие “Сибирский химический комбинат” (RU), Томский политехнический университет (RU)
|
(54) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ ЛИТИЙ МЕТАЛЛ ОКСИДОВ
(57) Реферат:
Изобретение относится к технологии получения дисперсных оксидных соединений, в частности литий марганец оксида LiхMn2O4, литий никель оксида LiхNiO2, литий кобальт оксида LixCoO2, применяемых преимущественно для изготовления катодных масс в ячейках литий-ионных аккумуляторов. Технической задачей изобретения является разработка способа получения литий металл оксида с уменьшенными размерами частиц и меньшим диапазоном гранулометрического состава дисперсного продукта. Способ получения литий металл оксидов с использованием соединений лития и соединений металлов в виде смешанных водных растворов нитратов металлов и лития, подаваемых в струю высокотемпературного теплоносителя с последующим выделением дисперсного продукта из паропылегазовой смеси заключается в том, что в исходный раствор вводят углевод, в качестве высокотемпературного теплоносителя используют инертные газы, а выделенный из паропылегазового потока дисперсный продукт подвергают дополнительной термообработке в окислительной атмосфере при температуре, не превышающей температуру распада однофазной структуры литий металл оксида. Поскольку традиционные способы получения литированных оксидов кобальта, никеля и марганца достаточно сложны и трудоемки, использование предлагаемого способа позволяет более просто получать гомогенные высокодисперсные порошки литий металл оксидов требуемой кристаллической структуры, которые могут применяться для изготовления катодов высокоэффективных тонкослойных литий-ионных аккумуляторов. 6 з. п. ф-лы, 1 ил., 2 табл.

Изобретение относится к технологии получения дисперсных оксидных соединений, в частности литий марганец оксида LiхМn2О4, литий никель оксида LixNiO2, литий кобальт оксида LixCoO2, применяемых преимущественно для изготовления катодных масс в ячейках литий-ионных аккумуляторов.
Наиболее распространенные способы получения этих соединений сводятся, в основном, к твердофазному синтезу в гетерогенных системах “соединение марганца (кобальта, никеля) – соединение лития в различных температурных условиях с различными условиями предварительной подготовки реагентов к термообработке (Митькин В.Н. Новейшие электродные материалы для литиевой химической энергетики. Новосибирск: Изд-во ОАО НЗХК, 2001, стр.142).
Разработан способ получения соединения LixMn2O4 со структурой шпинели при температурах ниже 450°С с использованием соединений лития и соединений марганца, включающий смешивание, термическую обработку и охлаждение, отличающийся тем, что смесь исходных соединений подвергают механической активации при молярном соотношении исходных реагентов Li_Mn=0,95:2-1,5-2 (Патент РФ №2132818, C 01 G 45/12, C 01 D 15/00/1999 г.). Этому способу также свойственны трудоемкие операции подготовки и смешения реагентов продолжительностью до 30 ч, производительность способа ограничена периодичностью процесса и объемом аппарата, а получаемый продукт требует дополнительной обработки с целью устранения агломератов (Митькин В.Н. Новейшие электродные материалы для литиевой химической энергетики, Новосибирск: Изд-во ОАО НЗХК, 2001, стр.146).
Известен способ получения высокодисперсных литий металл оксида (прототип), заключающийся в термическом разложении смешанных водных растворов нитратов металлов и лития (US 5807532, C 01 G 45/00, 1998 г.). Целью данного изобретения является достижение высокой однородности дисперсного продукта, которая достигается предотвращением разделения ионов лития и ионов других металлов при удалении воды из смешанных растворов при нагревании за счет добавления в растворы высокополимерных водорастворимых соединений. Однако указанный способ не позволяет контролировать размеры частиц дисперсного продукта и не позволяет получать наноразмерные порошки (с размерами частиц в пределах от единиц до десятков нанометров), что необходимо при создании химических источников тока на уровне развивающихся в настоящее время нанотехнологий (Головин Ю.И. Введение в нанотехнологию. М.: Машиностроение-1, 2003, стр.4).
Технической задачей изобретения является разработка способа получения литий металл оксида с уменьшенными размерами частиц и меньшим диапазоном гранулометрического состава дисперсного продукта.
Для достижения поставленной технической задачи в способе получения высокодисперсных литий металл оксидов с использованием соединений лития и соединений металлов в виде смешанных водных растворов нитратов металлов и лития, подвергаемых термическому разложению, в исходный раствор вводят углевод, термическое разложение проводят в потоке высокотемпературного инертного газа, а выделенный из паропылегазового потока дисперсный продут подвергают дополнительной термообработке в окислительной атмосфере при температуре, не превышающей температуру распада однофазной структуры литий металл оксида. При этом температуру паропылегазовой смеси на выходе из реакционного канала поддерживают в пределах 550-650°С. При получении литий металл оксидов смешанные водные растворы содержат нитраты лития и металла в количестве 55-60 г/л в пересчете на литий и металл при их молярном соотношении, вытекающим из химической формулы получаемого конечного продукта, углевод вводят в количестве 3-3,5 г на 1 г лития и металла. В случае получения литий марганец оксида дополнительную термообработку проводят при температуре в диапазоне 580-1050°С, тогда как при получении литий никель оксида дополнительную термообработку проводят при температуре в диапазоне 715-720°С. Для получения же литий кобальт оксида дополнительную термообработку продукта проводят при температуре в диапазоне 700-750°С.
Введение в состав исходных растворов углевода при термическом разложении в реакторе приводит к внедрению углерода в структуру дисперсного продукта и снижает размеры частиц образующихся оксидов. Использование в качестве газа-теплоносителя инертного газа предотвращает унос углерода из пылепарогазовой смеси в виде газообразных оксидов углерода. При дополнительной термообработке синтезированного в реакторе литий металл оксида углерод или его соединения в аморфной фазе полученного продукта окисляются и переходят в газообразное состояние, блокируя рост кристаллов и разрушая уже имеющиеся кристаллиты, не препятствуя при этом завершению формирования однофазной (или близкой к однофазной) кристаллической структуры литий металл оксида.
Реализация способа получения высокодисперсного порошка литий металл оксида приведена в примере получения литий марганец оксида LixMn2O4.
Пример: Проводили процесс наработки дисперсного порошка LixMn2O4 из смешанных азотнокислых растворов, содержащих литий и марганец в молярном соотношении 1:2 при их суммарной концентрации C =55-60 г/л, в реакторе с индукционным плазмотроном в качестве нагревателя газа теплоносителя. Молярное соотношение лития и марганца в растворе может изменяться соответственно химической формуле получаемого конечного продукта. Растворы распыляли в разогретый индукционным разрядом поток газового теплоносителя – азота на начальном участке цилиндрического реакционного канала. В данном случае индукционный плазмотрон использовался лишь как нагреватель, так как растворы вводились в нагретый в высокочастотном индукционном разряде поток инертного газа после его выхода из плазмотрона. При этом нагретый в индукционном разряде газ до начала взаимодействия с раствором имеет среднюю температуру 1200-1500°С и электрически нейтрален (отсутствует разделение зарядов, рекомбинация ионов практически завершена).
Средняя температура паропылегазовой смеси в конце реакционного канала составляла 590°С. В одном из двух опытов в исходный раствор была добавлена сахароза в количестве 200 г/л, т.е. по 3-3,5 г на 1 г лития и марганца. Выделение дисперсного продукта из пылегазового потока проводили в вихревом осадителе. Полученный продукт представлял собой гомогенный тонкодисперсный порошок без включений спеков и агломератов. Затем проводили дополнительную термообработку образцов полученных продуктов при температуре 580-1050°С в течение 15 мин. В таблице 1 приведены результаты рентгенофазового анализа образцов.
На чертеже показаны функции распределения (А) кристаллитов по размерам для образцов, полученные при исследовании дисперсности синтезированных материалов на рентгеновском дифрактометре. Обозначения, приведенные на фигуре: 1 – образец LiMn2O4, полученный из раствора с добавкой сахарозы; 1а – образец 1 после отжига при 580°С (15 мин); 2 – образец LiMn2O4, полученный из раствора без сахарозы; 2а – образец 2 после отжига при 580°С (15 мин).

Как видно из полученных результатов, добавка сахарозы в раствор после его термического разложения в реакторе с синтезом LiMn2O4 и дополнительной термообработки позволила более чем в два раза уменьшить диапазон гранулометрического состава дисперсного продукта и получить частицы вдвое меньших размеров со средним диаметром кристаллитов, равным 12,5 нм, относящихся к нанодисперсным материалам. Кристаллиты литий марганец оксида LixMn2O4, полученного другими способами, крупнее на порядок и более. При этом в образце порошка, полученного из раствора без сахарозы, размеры кристаллитов после дополнительной термообработки увеличились в 5,5 раз. Количество вводимой в исходный раствор сахарозы можно изменять в зависимости от требуемой степени уменьшения размеров частиц, а также от вязкости раствора, которая регламентирует характеристики его распыливания.
Анализ рентгенодифракционных характеристик не показал наличие углерода в кристаллической форме, однако по результатам химического анализа его массовая концентрация в образце 1,5-2%.
Нижний предел температуры на выходе из реакционного канала, равный 550°С, обусловлен тем, что в этом случае дисперсный продукт трудно выделить в вихревом осадителе или металлотканевом фильтре из-за адгезии на внутренних поверхностях трубопроводов и осадителя (фильтра). При температуре на выходе из реакционного канала выше 550°С продукт не образует отложений на стенках аппаратов. Верхний предел температуры реакционного канала 650°С определяется термостойкостью материала (нержавеющей стали), при большей температуре возможно загрязнение литий металл оксида продуктами окисления материала, из которого изготовлен реактор. Дополнительная термообработка при температуре, меньшей, чем 550°С, во-первых, не приводит к повышению содержания фазы LiMn2O4 в дисперсном продукте, во-вторых, содержание влаги может достигать значений более 10-2%, что ухудшает характеристики литий металл оксидов при использовании в литий-ионных аккумуляторах (Кедринский И.А., Яковлев В.Г. Li-ионные аккумуляторы. Красноярск: “Платина”, 2002 г., стр.65). При температуре выше 1050°С появляются признаки распада LiMn2O4, выявляются фазы Мn3O4 и LiMnO2.
Также были определены диапазоны температур синтеза однофазных структур литий металл оксидов LixCoO2 и LixNiO2 на основе соединений Li-Со-O и Li-Ni-O. В таблице 2 приведены температуры начала заметного образования и начала распада однофазных структур литий металл оксидов.

Поскольку традиционные способы получения литированных оксидов кобальта, никеля и марганца достаточно сложны и трудоемки, использование предлагаемого способа позволяет более просто получать гомогенные высокодисперсные порошки литий металл оксидов требуемой кристаллической структуры, которые могут применяться для изготовления катодов высокоэффективных тонкослойных литий-ионных аккумуляторов.
Формула изобретения
1. Способ получения высокодисперсных литий металл оксидов с использованием соединений лития и соединений металлов в виде смешанных водных растворов нитратов металлов и лития, подвергаемых термическому разложению, отличающийся тем, что в исходный раствор вводят углевод, термическое разложение проводят в потоке высокотемпературных инертных газов, а выделенный из паро-пылегазового потока дисперсный продукт подвергают дополнительной термообработке в окислительной атмосфере при температуре, не превышающей температуру распада однофазной структуры литий металл оксида.
2. Способ по п.1, отличающийся тем, что температуру паро-пылегазовой смеси на выходе из реакционного канала поддерживают в пределах 550-650°С.
3. Способ по п.1, отличающийся тем, что смешанные водные растворы содержат нитраты лития и металлов в количестве 55-60 г/л в пересчете на металлы при их молярном соотношении, вытекающим из химической формулы получаемого конечного продукта.
4. Способ по п.1, отличающийся тем, что при получении литий металл оксидов углевод вводят в количестве 3-3,5 г на 1 г лития и металла.
5. Способ по п.1, отличающийся тем, что при получении литий марганец оксида дополнительную термообработку проводят при температуре в диапазоне 580-1050°С.
6. Способ по п.1, отличающийся тем, что при получении литий никель оксида дополнительную термообработку проводят при температуре в диапазоне 715-720°С.
7. Способ по п.1, отличающийся тем, что при получении литий кобальт оксида дополнительную термообработку проводят при температуре в диапазоне 700-750°С.
РИСУНКИ
PD4A – Изменение наименования обладателя патента СССР или патента Российской Федерации на изобретение
(73) Новое наименование патентообладателя:
Открытое акционерное общество «Сибирский химический комбинат» (RU)
(73) Новое наименование патентообладателя:
Томский политехнический университет (RU)
Адрес для переписки:
636039, Томская обл., г. Северск, ул. Курчатова, 1, ОАО «СХК»
Извещение опубликовано: 20.08.2009 БИ: 23/2009
|
|